Lignin, while economically and environmentally beneficial, has had limited success in use in reinforcing carbon fibers due to harmful chemicals used in biomass pretreatment along with the limited physical interactions between lignin and polyacrylonitrile (PAN) during the spinning process. The focus of this study is to use lignin obtained from chemical-free oxidative biomass pretreatment (WEx) for blending with PAN at melt spinning conditions to produce carbon fiber precursors. In this study, the dynamic rheology of blending PAN with biorefinery lignin obtained from the WEx process is investigated with the addition of 1-butyl-3-methylimidazolium chloride as a plasticizer to address the current barriers of developing PAN/lignin carbon fiber precursors in the melt-spinning process. Lignin was esterified using butyric anhydride to reduce its hydrophilicity and to enhance its interactions with PAN. The studies indicate that butyration of the lignin (BL) increased non-Newtonian behavior and decreased thermo-reversibility of blends. The slope of the Han plot was found to be around 1.47 for PAN at 150 °C and decreased with increasing lignin concentrations as well as temperature. However, these blends were found to have higher elasticity and solution yield stress (47.6 Pa at 20%wt BL and 190 °C) when compared to pure PAN (5.8 Pa at 190 °C). The results from this study are significant for understanding lignin–PAN interactions during melt spinning for lower-cost carbon fibers.
more »
« less
Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with p ‐Hydroxybenzoic Acid‐Based Deep Eutectic Solvent
Abstract Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6C1monomers into the lignin structure. By expressing the bacterialubiCgene in sorghum,p‐hydroxybenzoic acid (PB)‐rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild‐type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB‐rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the β‐Ο‐4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB‐based DES and engineered PB‐rich biomass is a promising strategy to achieve a sustainable closed‐loop biorefinery.
more »
« less
- Award ID(s):
- 2027125
- PAR ID:
- 10304691
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemSusChem
- Volume:
- 14
- Issue:
- 23
- ISSN:
- 1864-5631
- Format(s):
- Medium: X Size: p. 5235-5244
- Size(s):
- p. 5235-5244
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Pretreatment is an important step to reduce the recalcitrance factors in biomass for effective biomass utilization. In particular, the choice of processing solvents in the pretreatment influences the quantity and quality of the final products. Although conventional organosolv pretreatments are effective, they are typically performed under harsh conditions. Compared to those approaches, recent studies have shown that the use of Deep Eutectic Solvents (DES) made up of a hydrogen bond donor and acceptor at the eutectic point can be a promising alternative as biomass processing solvents because of their good thermal stability and compatibility with natural components. In this study, DES pretreatment was applied to corn stover, which is the largest agricultural residue in the United States. The performance of the pretreatments was assessed by measuring the removal of xylan and lignin from the corn stover, as well as the production of glucose and xylose by subsequent enzymatic hydrolysis. The results indicated that the DES pretreatment resulted in significantly higher delignification rates (75%) than an organosolv pretreatment (35%) at the same processing temperature. The DES pretreatment also resulted in a more effective conversion of glucan (81%) and xylan (56%) than the organosolv pretreatment. The results indicated that DES pretreatment is a promising processing strategy for biomass utilization.more » « less
-
A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.more » « less
-
Abstract Biomass‐derived deep eutectic solvents (DESs) have been introduced as promising pretreatment and fractionation solvents because of their mild processing conditions, easy synthesis, and green solvent components from biomass. In recent DES studies, solvent‐based third constituents like water, ethanol, and others improve the processibility of typical binary DESs. However, the impacts of these components are not well understood. Here, two solvent‐based constituents, including water and ethylene glycol, were applied to 3,4‐dihydroxybenzoic acid (DHBA)‐based DES system for improving the conversion efficiency of cellulose‐rich fraction and the properties of lignin fraction. Chemical composition, enzymatic digestibility, degree of polymerization of cellulose and physicochemical properties of lignin were used to evaluate the impact of each third constituent on biomass processing. Ternary ChCl‐DHBA DESs exhibited better performances in delignification, fermentable sugar production, and preservation of β‐O‐4 ether linkage in lignin compared with binary ChCl‐DHBA DES.more » « less
-
Non-productive binding of cellulolytic enzymes to various plant cell wall components, such as lignin and cellulose, necessitates high enzyme loadings to achieve efficient conversion of pretreated lignocellulosic biomass to fermentable sugars. Protein supercharging was previously employed as one of the strategies to reduce non-productive binding to biomass. However, various questions remain unanswered regarding the hydrolysis kinetics of supercharged enzymes towards pretreated biomass substrates and the role played by enzyme interactions with individual cell wall polymers such as cellulose and xylan. In this study, CBM2a (fromThermobifida fusca) fused with endocellulase Cel5A (fromT. fusca) was used as the model wild-type enzyme and CBM2a was supercharged using Rosetta, to obtain eight variants with net charges spanning −14 to +6. These enzymes were recombinantly expressed inE. coli, purified from cell lysates, and their hydrolytic activities were tested against pretreated biomass substrates (AFEX and EA treated corn stover). Although the wild-type enzyme showed greater activity compared to both negatively and positively supercharged enzymes towards pretreated biomass, thermal denaturation assays identified two negatively supercharged constructs that perform better than the wild-type enzyme (∼3 to 4-fold difference in activity) upon thermal deactivation at higher temperatures. To better understand the causal factor of reduced supercharged enzyme activity towards AFEX corn stover, we performed hydrolysis assays on cellulose-I/xylan/pNPC, lignin inhibition assays, and thermal stability assays. Altogether, these assays showed that the negatively supercharged mutants were highly impacted by reduced activity towards xylan whereas the positively supercharged mutants showed dramatically reduced activity towards cellulose and xylan. It was identified that a combination of impaired cellulose binding and lower thermal stability was the cause of reduced hydrolytic activity of positively supercharged enzyme sub-group. Overall, this study demonstrated a systematic approach to investigate the behavior of supercharged enzymes and identified supercharged enzyme constructs that show superior activity at elevated temperatures. Future work will address the impact of parameters such as pH, salt concentration, and assay temperature on the hydrolytic activity and thermal stability of supercharged enzymes.more » « less
An official website of the United States government
