skip to main content

Title: Quantifying the role of ocean coupling in Arctic amplification and sea-ice loss over the 21st century

The enhanced warming of the Arctic, relative to other parts of the Earth, a phenomenon known as Arctic amplification, is one of the most striking features of climate change, and has important climatic impacts for the entire Northern Hemisphere. Several mechanisms are believed to be responsible for Arctic amplification; however, a quantitative understanding of their relative importance is still missing. Here, using ensembles of model integrations, we quantify the contribution of ocean coupling, both its thermodynamic and dynamic components, to Arctic amplification over the 20th and 21st centuries. We show that ocean coupling accounts for ~80% of the amplification by 2100. In particular, we show that thermodynamic coupling is responsible for future amplification and sea-ice loss as it overcomes the effect of dynamic coupling which reduces the amplification and sea-ice loss by ~35%. Our results demonstrate the utility of targeted numerical experiments to quantify the role of specific mechanisms in Arctic amplification, for better constraining climate projections.

; ; ;
Publication Date:
Journal Name:
npj Climate and Atmospheric Science
Nature Publishing Group
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregatemore »effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.

    « less
  2. Abstract In this study the impact of extreme cyclones on Arctic sea ice in summer is investigated. Examined in particular are relative thermodynamic and dynamic contributions to sea ice volume budgets in the vicinity of Arctic summer cyclones in 2012 and 2016. Results from this investigation illustrate sea ice loss in the vicinity of the cyclone trajectories during each year were associated with different dominant processes: thermodynamic (melting) in the Pacific sector of the Arctic in 2012, and both thermodynamic and dynamic processes in the Pacific sector of the Arctic in 2016. Comparison of both years further suggests that the Arctic minimum sea ice extent is influenced by not only the strength of the cyclone, but also by the timing and location relative to the sea ice edge. Located near the sea ice edge in early August in 2012, and over the central Arctic later in August in 2016, extreme cyclones contributed to comparable sea ice area (SIA) loss, yet enhanced sea ice volume loss in 2012 relative to 2016. Central to a characterization of extreme cyclone impacts on Arctic sea ice from the perspective of thermodynamic and dynamic processes, we present an index describing relative thermodynamic and dynamic contributionsmore »to sea ice volume changes. This index helps to quantify and improve our understanding of initial sea ice state and dynamical responses to cyclones in a rapidly warming Arctic, with implications for seasonal ice forecasting, marine navigation, coastal community infrastructure and designation of protected and ecologically sensitive marine zones.« less
  3. Meltwater and ice discharge from a retreating Antarctic Ice Sheet could have important impacts on future global climate. Here, we report on multi-century (present–2250) climate simulations performed using a coupled numerical model integrated under future greenhouse-gas emission scenarios IPCC RCP4.5 and RCP8.5, with meltwater and ice discharge provided by a dynamic-thermodynamic ice sheet model. Accounting for Antarctic discharge raises subsurface ocean temperatures by >1°C at the ice margin relative to simulations ignoring discharge. In contrast, expanded sea ice and 2° to 10°C cooler surface air and surface ocean temperatures in the Southern Ocean delay the increase of projected global mean anthropogenic warming through 2250. In addition, the projected loss of Arctic winter sea ice and weakening of the Atlantic Meridional Overturning Circulation are delayed by several decades. Our results demonstrate a need to accurately account for meltwater input from ice sheets in order to make confident climate predictions.
  4. Abstract Under increasing greenhouse gases, the Arctic warms about twice as fast as elsewhere, known as Arctic amplification (AA). AA weakens meridional temperature gradients and is hypothesized to weaken zonal wind and cause wavier circulation with stronger meridional wind ( υ ) over northern mid-to-high latitudes. Here model simulations are analyzed to examine the υ response to increased CO 2 and AA alone. Total υ changes are found to be dominated by the effect of increased CO 2 without AA, with a zonal wavenumber-4 (wavenumber-3) change pattern over the northern (southern) extratropics that generally enhances current υ and results partly from changes in zonal temperature gradients. The extratropical υ change patterns are quasi-barotropic and are more pronounced during boreal winter. The CO 2 forcing also causes baroclinic υ changes over the tropics tied to convection changes. The impact of AA on υ is mainly over the northern extratropics and is opposite to the effect of increased CO 2 but with smaller magnitude. An eastward shift (∼5° longitude) and an amplitude increase (∼1 m s −1 ) in the climatology of the northerlies over Europe caused mainly by CO 2 forcing contribute to the drying in southern Europe, while both AAmore »and CO 2 forcing enhance the climatology of the northerlies over East Asia. Over the northern mid-to-high latitudes, Arctic sea ice loss and AA enhance the land–ocean thermal contrast in winter, while increased CO 2 alone weakens it, resulting in opposite changes in zonal temperature gradients and thus υ . Different warming rates over land and ocean also contribute to the intermodel spread in υ response patterns among climate models. Significance Statement Meridional wind ( υ ) greatly contributes to thermal and moisture advection due to large meridional gradients in these fields. It is hypothesized that the enhanced Arctic warming under anthropogenic global warming could weaken meridional temperature gradients, decelerate westerly jets, and cause wavier circulation with stronger υ over northern extratropics. Using novel climate model simulations, we found that the effect of increased CO 2 without AA determines the total υ changes. AA generally weakens the climatological υ , contrary to the direct effect of increased CO 2 . The υ changes are small relative to its climatology but may have large impacts on regional climate over central Europe, East Asia, and interior North America. More research is needed to examine the mechanisms causing regional υ changes.« less
  5. Abstract

    Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positivemore »winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.

    Significance Statement

    Under increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.

    « less