skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.


Title: Active virus-host interactions at sub-freezing temperatures in Arctic peat soil
Abstract Background

Winter carbon loss in northern ecosystems is estimated to be greater than the average growing season carbon uptake and is primarily driven by microbial decomposers. Viruses modulate microbial carbon cycling via induced mortality and metabolic controls, but it is unknown whether viruses are active under winter conditions (anoxic and sub-freezing temperatures).

Results

We used stable isotope probing (SIP) targeted metagenomics to reveal the genomic potential of active soil microbial populations under simulated winter conditions, with an emphasis on viruses and virus-host dynamics. Arctic peat soils from the Bonanza Creek Long-Term Ecological Research site in Alaska were incubated under sub-freezing anoxic conditions with H218O or natural abundance water for 184 and 370 days. We sequenced 23 SIP-metagenomes and measured carbon dioxide (CO2) efflux throughout the experiment. We identified 46 bacterial populations (spanning 9 phyla) and 243 viral populations that actively took up18O in soil and respired CO2throughout the incubation. Active bacterial populations represented only a small portion of the detected microbial community and were capable of fermentation and organic matter degradation. In contrast, active viral populations represented a large portion of the detected viral community and one third were linked to active bacterial populations. We identified 86 auxiliary metabolic genes and other environmentally relevant genes. The majority of these genes were carried by active viral populations and had diverse functions such as carbon utilization and scavenging that could provide their host with a fitness advantage for utilizing much-needed carbon sources or acquiring essential nutrients.

Conclusions

Overall, there was a stark difference in the identity and function of the active bacterial and viral community compared to the unlabeled community that would have been overlooked with a non-targeted standard metagenomic analysis. Our results illustrate that substantial active virus-host interactions occur in sub-freezing anoxic conditions and highlight viruses as a major community-structuring agent that likely modulates carbon loss in peat soils during winter, which may be pivotal for understanding the future fate of arctic soils' vast carbon stocks.

 
more » « less
Award ID(s):
1636476
NSF-PAR ID:
10304989
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Microbiome
Volume:
9
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Rock-dwelling microorganisms are key players in ecosystem functioning of Antarctic ice free-areas. Yet, little is known about their diversity and ecology, and further still, viruses in these communities have been largely unexplored despite important roles related to host metabolism and nutrient cycling. To begin to address this, we present a large-scale viral catalog from Antarctic rock microbial communities.

    Results

    We performed metagenomic analyses on rocks from across Antarctica representing a broad range of environmental and spatial conditions, and which resulted in a predicted viral catalog comprising > 75,000 viral operational taxonomic units (vOTUS). We found largely undescribed, highly diverse and spatially structured virus communities which had predicted auxiliary metabolic genes (AMGs) with functions indicating that they may be potentially influencing bacterial adaptation and biogeochemistry.

    Conclusion

    This catalog lays the foundation for expanding knowledge of virosphere diversity, function, spatial ecology, and dynamics in extreme environments. This work serves as a step towards exploring adaptability of microbial communities in the face of a changing climate.

     
    more » « less
  2. Abstract

    Microbial communities in oxygen minimum zones (OMZs) are known to have significant impacts on global biogeochemical cycles, but viral influence on microbial processes in these regions are much less studied. Here we provide baseline ecological patterns using microscopy and viral metagenomics from the Eastern Tropical North Pacific (ETNP) OMZ region that enhance our understanding of viruses in these climate-critical systems. While extracellular viral abundance decreased below the oxycline, viral diversity and lytic infection frequency remained high within the OMZ, demonstrating that viral influences on microbial communities were still substantial without the detectable presence of oxygen. Viral community composition was strongly related to oxygen concentration, with viral populations in low-oxygen portions of the water column being distinct from their surface layer counterparts. However, this divergence was not accompanied by the expected differences in viral-encoded auxiliary metabolic genes (AMGs) relating to nitrogen and sulfur metabolisms that are known to be performed by microbial communities in these low-oxygen and anoxic regions. Instead, several abundant AMGs were identified in the oxycline and OMZ that may modulate host responses to low-oxygen stress. We hypothesize that this is due to selection for viral-encoded genes that influence host survivability rather than modulating host metabolic reactions within the ETNP OMZ. Together, this study shows that viruses are not only diverse throughout the water column in the ETNP, including the OMZ, but their infection of microorganisms has the potential to alter host physiological state within these biogeochemically important regions of the ocean.

     
    more » « less
  3. Summary

    Oxygen minimum zones (OMZs) are critical to marine nitrogen cycling and global climate change. While OMZ microbial communities are relatively well‐studied, little is known about their viruses. Here, we assess the viral community ecology of 22 deeply sequenced viral metagenomes along a gradient of oxygenated to anoxic waters (<0.02 μmol/l O2) in the Eastern Tropical South Pacific (ETSP) OMZ. We identified 46 127 viral populations (≥5 kb), which augments the known viruses from ETSP by 10‐fold. Viral communities clustered into six groups that correspond to oceanographic features. Oxygen concentration was the predominant environmental feature driving viral community structure. Alpha and beta diversity of viral communities in the anoxic zone were lower than in surface waters, which parallels the low microbial diversity seen in other studies. ETSP viruses were largely endemic, with the majority of shared viruses (87%) also present in other OMZ samples. We detected 543 putative viral‐encoded auxiliary metabolic genes (AMGs), of which some have a distribution that reflects physico‐chemical characteristics across depth. Together these findings provide an ecological baseline for viral community structure, drivers and population variability in OMZs that will help future studies assess the role of viruses in these climate‐critical environments.

     
    more » « less
  4. Abstract Background

    SARS-CoV-2 is an RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Viruses exist in complex microbial environments, and recent studies have revealed both synergistic and antagonistic effects of specific bacterial taxa on viral prevalence and infectivity. We set out to test whether specific bacterial communities predict SARS-CoV-2 occurrence in a hospital setting.

    Methods

    We collected 972 samples from hospitalized patients with COVID-19, their health care providers, and hospital surfaces before, during, and after admission. We screened for SARS-CoV-2 using RT-qPCR, characterized microbial communities using 16S rRNA gene amplicon sequencing, and used these bacterial profiles to classify SARS-CoV-2 RNA detection with a random forest model.

    Results

    Sixteen percent of surfaces from COVID-19 patient rooms had detectable SARS-CoV-2 RNA, although infectivity was not assessed. The highest prevalence was in floor samples next to patient beds (39%) and directly outside their rooms (29%). Although bed rail samples more closely resembled the patient microbiome compared to floor samples, SARS-CoV-2 RNA was detected less often in bed rail samples (11%). SARS-CoV-2 positive samples had higher bacterial phylogenetic diversity in both human and surface samples and higher biomass in floor samples. 16S microbial community profiles enabled high classifier accuracy for SARS-CoV-2 status in not only nares, but also forehead, stool, and floor samples. Across these distinct microbial profiles, a single amplicon sequence variant from the genusRothiastrongly predicted SARS-CoV-2 presence across sample types, with greater prevalence in positive surface and human samples, even when compared to samples from patients in other intensive care units prior to the COVID-19 pandemic.

    Conclusions

    These results contextualize the vast diversity of microbial niches where SARS-CoV-2 RNA is detected and identify specific bacterial taxa that associate with the viral RNA prevalence both in the host and hospital environment.

     
    more » « less
  5. Bordenstein, Seth (Ed.)
    ABSTRACT Viruses belonging to the Nucleocytoviricota phylum are globally distributed and include members with notably large genomes and complex functional repertoires. Recent studies have shown that these viruses are particularly diverse and abundant in marine systems, but the magnitude of actively replicating Nucleocytoviricota present in ocean habitats remains unclear. In this study, we compiled a curated database of 2,431 Nucleocytoviricota genomes and used it to examine the gene expression of these viruses in a 2.5-day metatranscriptomic time-series from surface waters of the California Current. We identified 145 viral genomes with high levels of gene expression, including 90 Imitervirales and 49 Algavirales viruses. In addition to recovering high expression of core genes involved in information processing that are commonly expressed during viral infection, we also identified transcripts of diverse viral metabolic genes from pathways such as glycolysis, the TCA cycle, and the pentose phosphate pathway, suggesting that virus-mediated reprogramming of central carbon metabolism is common in oceanic surface waters. Surprisingly, we also identified viral transcripts with homology to actin, myosin, and kinesin domains, suggesting that viruses may use these gene products to manipulate host cytoskeletal dynamics during infection. We performed phylogenetic analysis on the virus-encoded myosin and kinesin proteins, which demonstrated that most belong to deep-branching viral clades, but that others appear to have been acquired from eukaryotes more recently. Our results highlight a remarkable diversity of active Nucleocytoviricota in a coastal marine system and underscore the complex functional repertoires expressed by these viruses during infection. IMPORTANCE The discovery of giant viruses has transformed our understanding of viral complexity. Although viruses have traditionally been viewed as filterable infectious agents that lack metabolism, giant viruses can reach sizes rivalling cellular lineages and possess genomes encoding central metabolic processes. Recent studies have shown that giant viruses are widespread in aquatic systems, but the activity of these viruses and the extent to which they reprogram host physiology in situ remains unclear. Here, we show that numerous giant viruses consistently express central metabolic enzymes in a coastal marine system, including components of glycolysis, the TCA cycle, and other pathways involved in nutrient homeostasis. Moreover, we found expression of several viral-encoded actin, myosin, and kinesin genes, indicating viral manipulation of the host cytoskeleton during infection. Our study reveals a high activity of giant viruses in a coastal marine system and indicates they are a diverse and underappreciated component of microbial diversity in the ocean. 
    more » « less