skip to main content

Title: On an inverse potential problem for a fractional reaction–diffusion equation

This paper considers an inverse problem for a reaction diffusion equation from overposed final time data. Specifically, we assume that the reaction termis known but modified by a space-dependent coefficientto obtain. Thus the strength of the reaction can vary with location. The inverse problem is to recover this coefficient. Our technique is to use iterative Newton-type methods although we also use and analyse higher order schemes of Halley type. We show that such schemes are well defined and prove convergence results. Our assumption about the diffusion process is also more general in that we will extend the traditional parabolic equation paradigm to include the subdiffusion case based on non-local fractional order operators in time. The final section of the paper shows numerical reconstructions based on the above methods and compares our methodology to previous work based on the linear model withas well as to the nonlinear case. We also show the interdependence between effective reconstruction ofqand the coupling between the value of the final time of measurement and the subdiffusion parameter.

Publication Date:
Journal Name:
Inverse Problems
Page Range or eLocation-ID:
Article No. 065004
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastableH(3Δ1)state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-livedQ(3Δ2)state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to theC(1Π1)state, which allows for efficient population transfer between the ground stateXmore »width='0.50em'/>(1Σ+)and theQstate viaXCQStimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, theXCtransition dipole moment, and branching ratios of decays from theCstate.

    « less
  2. Abstract

    The detection of GW170817, the first neutron star-neutron star merger observed by Advanced LIGO and Virgo, and its following analyses represent the first contributions of gravitational wave data to understanding dense matter. Parameterizing the high density section of the equation of state of both neutron stars through spectral decomposition, and imposing a lower limit on the maximum mass value, led to an estimate of the stars’ radii ofkm andkm (Abbottet al2018Phys. Rev. Lett.121161101). These values do not, however, take into account any uncertainty owed to the choice of the crust low-density equation of state, which was fixed to reproduce the SLy equation of state model (Douchin and Haensel 2001Astron. Astrophys.380151). We here re-analyze GW170817 data and establish that different crust models do not strongly impact the mass or tidal deformability of a neutron star—it is impossible to distinguish between low-density models with gravitational wave analysis. However, the crust does have an effect on inferred radius. We predict the systematic error due to this effect using neutron star structure equations, and compare the prediction to results from full parameter estimation runs. For GW170817, this systematic error affects the radius estimate by 0.3 km, approximatelyofmore »the neutron stars’ radii.

    « less
  3. Abstract

    Physical systems with non-trivial topological order find direct applications in metrology (Klitzinget al1980Phys.Rev. Lett.45494–7) and promise future applications in quantum computing (Freedman 2001Found. Comput. Math.1183–204; Kitaev 2003Ann. Phys.3032–30). The quantum Hall effect derives from transverse conductance, quantized to unprecedented precision in accordance with the system’s topology (Laughlin 1981Phys. Rev.B235632–33). At magnetic fields beyond the reach of current condensed matter experiment, around104T, this conductance remains precisely quantized with values based on the topological order (Thoulesset al1982Phys. Rev. Lett.49405–8). Hitherto, quantized conductance has only been measured in extended 2D systems. Here, we experimentally studied narrow 2D ribbons, just 3 or 5 sites wide along one direction, using ultracold neutral atoms where such large magnetic fields can be engineered (Jaksch and Zoller 2003New J. Phys.556; Miyakeet al2013Phys. Rev. Lett.111185302; Aidelsburgeret al2013Phys. Rev. Lett.111185301; Celiet al2014Phys. Rev. Lett.112043001; Stuhlet al2015Science3491514; Manciniet al2015Science3491510; Anet al2017Sci. Adv.3). We microscopically imaged the transverse spatial motion underlying the quantized Hall effect. Our measurements identify the topological Chern numbers with typical uncertainty of5%, and show that although band topology is only properly defined in infinite systems, its signatures are striking even in nearly vanishingly thin systems.

  4. Abstract

    In Mediterranean-type climates, asynchronicity between energy and water availability means that ecosystems rely heavily on the water-storing capacity of the subsurface to sustain plant water use over the summer dry season. The root-zone water storage capacity (Smax[L]) defines the maximum volume of water that can be stored in plant accessible locations in the subsurface, but is poorly characterized and difficult to measure at large scales. Here, we develop an ecohydrological modeling framework to describe howSmaxmediates root zone water storage (S[L]), and thus dry season plant water use. The model reveals that whereSmaxis high relative to mean annual rainfall,Sis not fully replenished in all years, and root-zone water storage and therefore plant water use are sensitive to annual rainfall. Conversely, whereSmaxis low,Sis replenished in most years but can be depleted rapidly between storm events, increasing plant sensitivity to rainfall patterns at the end of the wet season. In contrast to both the high and lowSmaxcases, landscapes with intermediateSmaxvalues are predicted to minimize variability inmore »dry season evapotranspiration. These diverse plant behaviors enable a mapping between time variations in precipitation, evapotranspiration andSmax, which makes it possible to estimateSmaxusing remotely sensed vegetation data − that is, using plants as sensors. We test the model using observations ofSmaxin soils and weathered bedrock at two sites in the Northern California Coast Ranges. Accurate model performance at these sites, which exhibit strongly contrasting weathering profiles, demonstrates the method is robust across diverse plant communities, and modes of storage and runoff generation.

    « less
  5. Abstract

    The waveform of a compact binary coalescence is predicted by general relativity. It is therefore possible to directly constrain the response of a gravitational-wave (GW) detector by analyzing a signal’s observed amplitude and phase evolution as a function of frequency. GW signals alone constrain the relative amplitude and phase between different frequencies within the same detector and between different detectors. Furthermore, if the source’s distance and inclination can be determined independently, for example from an electromagnetic (EM) counterpart, one can calibrate the absolute amplitude response of the detector network. We analyze GW170817’s ability to calibrate the LIGO/Virgo detectors, finding a relative amplitude calibration precision of approximately20% and relative phase precision of(uncertainty) between the LIGO Hanford and Livingston detectors. Incorporating additional information about the distance and inclination of the source from EM observations, the relative amplitude of the LIGO detectors can be tightened to  ∼%. Including EM observations also constrains the absolute amplitude precision to similar levels. We investigate the ability of future events to improve astronomical calibration. By simulating the cumulative uncertainties from an ensemble of detections, we find that with several hundred events with EM counterparts, or several thousandmore »events without counterparts, we reach percent-level astronomical calibration. This corresponds to  ∼5–10 years of operation at advanced LIGO and Virgo design sensitivity. It is to be emphasized that directin situmeasurements of detector calibration provide significantly higher precision than astronomical sources, and already constrain the calibration to a few percent in amplitude and a few degrees in phase. In this sense, our astronomical calibrators only corroborate existing calibration measurements. Nonetheless, it is remarkable that we are able to use an astronomical GW source to characterize properties of a terrestrial GW instrument, and astrophysical calibration may become an important corroboration of existing calibration methods, providing a completely independent constraint of potential systematics.

    « less