skip to main content

Title: Interannual measures of nutritional stress during a marine heatwave (the Blob) differ between two North Pacific seabird species

‘The Blob’, a mass of anomalously warm water in the Northeast Pacific Ocean peaking from 2014 to 2016, caused a decrease in primary productivity with cascading effects on the marine ecosystem. Among the more obvious manifestations of the event were seabird breeding failures and mass mortality events. Here, we used corticosterone in breast feathers (fCort), grown in the winter period during migration, as an indicator of nutritional stress to investigate the impact of the Blob on two sentinel Pacific auk species (family Alcidae). Feathers were collected from breeding females over 8 years from 2010 to 2017, encompassing the Blob period. Since Pacific auks replace body feathers at sea during the migratory period, measures of fCort provide an accumulated measure of nutritional stress or allostatic load during this time. Changes in diet were also measured using δ15N and δ13C values from feathers. Relative to years prior to the Blob, the primarily zooplanktivorous Cassin’s auklets (Ptychoramphus aleuticus) had elevated fCort in 2014–2017, which correlated with the occurrence of the Blob and a recovery period afterwards, with relatively stable feather isotope values. In contrast, generalist rhinoceros auklets (Cerorhinca monocerata) displayed stable fCort values across years and increased δ15N values during the Blob. As more » marine heatwaves increase in intensity and frequency due to climate change, this study provides insight into the variable response of Pacific auks to such phenomena and suggests a means for monitoring population-level responses to climatological variation.

« less
 ;  ;  ;  ;  ;  ;  ;  ;  ;
Publication Date:
Journal Name:
Conservation Physiology
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this

    Populations of Vaux’s Swift (Chaetura vauxi), like those of many aerial insectivores, are rapidly declining. Determining when and where populations are limited across the annual cycle is important for their conservation. Establishing the linkages between wintering and breeding sites and the strength of the connections between them is a necessary first step. In this study, we analyzed 3 stable isotopes (δ13C, δ15N, δ2H) from feathers collected during spring migration from Vaux’s Swifts that perished during a stopover on Vancouver Island, British Columbia, Canada. We previously analyzed claw tissue (grown during winter) from the same individuals, revealing that the swiftsmore »likely wintered in 2 or 3 locations/habitats. Here, we used stable isotope analysis of flight feathers presumed to have been grown on, or near, the breeding grounds to determine the likely previous breeding locations and presumed destinations for the swifts. Stable isotope values (δ13C, δ15N, δ2H) showed no meaningful variation between age classes, sexes, or with body size. Surprisingly, ~26% of the birds sampled had feather isotope values that were not consistent with growth on their breeding grounds. For the remaining birds, assigned breeding origins appeared most consistent with molt origins on Vancouver Island. Overall, migratory connectivity of this population was relatively weak (rM = 0.07). However, the degree of connectivity depended on how many winter clusters were analyzed; the 2-cluster solution suggested no significant connectivity, but the 3-cluster solution suggested weak connectivity. It is still unclear whether low migratory connectivity observed for Vaux’s Swift and other aerial insectivores may make their populations more or less vulnerable to habitat loss; therefore, further efforts should be directed to assessing whether aerial insectivores may be habitat limited throughout the annual cycle.

    « less
  2. How individual organisms adapt to nonoptimal conditions through physiological acclimatization is central to predicting the consequences of unusual abiotic and biotic conditions such as those produced by marine heat waves. The Northeast Pacific, including the Gulf of Alaska, experienced an extreme warming event (2014–2016, “The Blob”) that affected all trophic levels and led to large-scale changes in the community. The marine copepod Neocalanus flemingeri is a key member of the subarctic Pacific pelagic ecosystem. During the spring phytoplankton bloom this copepod builds substantial lipid stores as it prepares for its nonfeeding adult phase. A 3-year comparison of gene expression profilesmore »of copepods collected in Prince William Sound in the Gulf of Alaska between 2015 and 2017 included two high-temperature years (2015 and 2016) and one year with very low phytoplankton abundances (2016). The largest differences in gene expression were between high and low chlorophyll years, and not between warm and cool years. The observed gene expression patterns were indicative of physiological acclimatization. The predominant signal in 2016 was the down-regulation of genes involved in glycolysis and its incoming pathways, consistent with the modulation of metabolic rates in response to prolonged low food conditions. Despite the down-regulation of genes involved in metabolism, there was no evidence of suppression of protein synthesis based on gene expression or behavioural activity. Genes involved in muscle function were up-regulated, and the copepods were actively swimming and responsive to stimuli at collection. However, genes involved in fatty acid metabolism were down-regulated in 2016, suggesting reduced lipid accumulation.« less
  3. Abstract The Ross Sea (Antarctica) is one of the most productive marine ecosystems in the Southern Ocean and supports nearly one million breeding pairs of Adélie penguins (Pygoscelis adeliae) annually. There also is a well-preserved record of abandoned penguin colonies that date from before the Last Glacial Maximum (>45,000 14C yr B.P.) through the Holocene. Cape Irizar is a rocky cape located just south of the Drygalski Ice Tongue on the Scott Coast. In January 2016, several abandoned Adélie penguin sites and abundant surface remains of penguin bones, feathers, and carcasses that appeared to be fresh were being exposed bymore »melting snow and were sampled for radiocarbon analysis. The results indicate the “fresh” remains are actually ancient and that three periods of occupation by Adélie penguins are represented beginning ca. 5000 calibrated calendar (cal.) yr B.P., with the last occupation ending by ca. 800 cal. yr B.P. The presence of fresh-appearing remains on the surface that are actually ancient in age suggests that only recently has snowmelt exposed previously frozen carcasses and other remains for the first time in ∼800 yr, allowing them to decay and appear fresh. Recent warming trends and historical satellite imagery (Landsat) showing decreasing snow cover on the cape since 2013 support this hypothesis. Increased δ13C values of penguin bone collagen further indicate a period of enhanced marine productivity during the penguin “optimum”, a warm period at 4000–2000 cal. yr B.P., perhaps related to an expansion of the Terra Nova Bay polynya with calving events of the Drygalski Ice Tongue.« less
  4. Abstract

    Some of the longest and most comprehensive marine ecosystem monitoring programs were established in the Gulf of Alaska following the environmental disaster of the Exxon Valdez oil spill over 30 years ago. These monitoring programs have been successful in assessing recovery from oil spill impacts, and their continuation decades later has now provided an unparalleled assessment of ecosystem responses to another newly emerging global threat, marine heatwaves. The 2014–2016 northeast Pacific marine heatwave (PMH) in the Gulf of Alaska was the longest lasting heatwave globally over the past decade, with some cooling, but also continued warm conditions through 2019. Our analysis ofmore »187 time series from primary production to commercial fisheries and nearshore intertidal to offshore oceanic domains demonstrate abrupt changes across trophic levels, with many responses persisting up to at least 5 years after the onset of the heatwave. Furthermore, our suite of metrics showed novel community-level groupings relative to at least a decade prior to the heatwave. Given anticipated increases in marine heatwaves under current climate projections, it remains uncertain when or if the Gulf of Alaska ecosystem will return to a pre-PMH state.

    « less
  5. Elegant terns Thalasseus elegans breed in a very limited area of the northern Gulf of California and the Pacific coast of southern California, with up to 95% (mean 78%, 1991–2014, Perez et al., 2020 ) of the population nesting on Isla Rasa in the northern Gulf of California. On Isla Rasa, the primary nesting colony, elegant terns suffered predation by rodents which raised the possibility of population extinction, with a substantial proportion of the world population nesting on this single island. Because of this threat, rodents were successfully removed from Isla Rasa in 1995. The removal of rodents from Islamore »Rasa led to a near immediate increase in the population of elegant terns. That increase was associated with a changing pattern in dispersal by the terns, including extraordinary movements to the Gulf of Mexico, the Atlantic coast of the United States north to Massachusetts, and, remarkably, to western Europe. A few elegant terns successfully bred at these European localities during 2009 to the present. In this paper we use this exceptional example of long-distance dispersal to illustrate how rapid population growth during ∼ 1995 to present can lead to successful colonization of remote sites through repeated instances of vagrancy. We tested four Hypotheses that together support the idea that the growing population of elegant terns has produced increasing numbers of young, and these young have spread, through the mechanism of vagrancy, to the Pacific Northwest, the east coast of the United States, and western Europe. Our Hypotheses are: (1) The nesting population of elegant terns within their core nesting range has increased since removal of rodents from Isla Rasa; (2) Occurrence of vagrant elegant terns in the Pacific Northwest is driven by population growth within the core breeding range. (3) Occurrence of vagrant elegant terns at the east coast of the United States is driven by population growth within the core breeding range. (4) Occurrence and colonization of western Europe by elegant terns is driven by nesting population size within the core breeding range. Corollaries of these Hypotheses are, (i) that there is a time lag in occurrence of vagrants at each of these areas, based on increasing distance from the core breeding range and (ii) the number of vagrants in any given year is also related to sea surface temperature (SST), as expressed by Oceanic Niño Index, a proxy for food resource levels. Generally we found strong statistical support for each of these Hypotheses; an exception was for the occurrence of elegant terns in the Pacific Northwest, which initially occurred following El Niño events (low food supply) and profound breeding failure, but later corresponding to cold water years with high breeding success. We use elegant terns, exceptional for the highly restricted breeding range and sustained population growth over 25 years, to illustrate how growing populations may colonize very distant habitats through repeated instances of vagrancy.« less