skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: What is that smell? Hummingbirds avoid foraging on resources with defensive insect compounds
Abstract

Hummingbirds utilize visual cues to locate flowers, but little is known about the role olfaction plays in nectar foraging despite observations that hummingbirds avoid resources occupied by certain insects. We investigated the behavioral responses of both wild and captive hummingbirds to olfactory cues of hymenopteran floral visitors, including native wood ants (Formica francoeuri), invasive Argentine ants (Linepithema humile), and European honeybees (Apis mellifera). We demonstrate for the first time that hummingbirds use olfaction to make foraging decisions when presented with insect-derived chemical cues under field and aviary conditions. Both wild and captive hummingbirds avoided foraging on feeders with defensive chemicals ofF. francoeuriand aggregation pheromones ofL. humile, but showed no response to honeybee cuticular hydrocarbons. Our experiments demonstrate the importance of olfaction in shaping hummingbird foraging decisions.

Significance statement

Recent reviews reveal that avian olfaction is not just limited to vultures and a few taxa. We demonstrate that a very charismatic group, hummingbirds, avoid defensive and aggregatory chemical cues from insects present at nectar resources. Olfactory cues can provide critical information about the presence and potential threat of insect floral visitors. This study raises new questions about the underrated importance of olfaction in avian foraging and specifically, hummingbird foraging.

 
more » « less
NSF-PAR ID:
10305205
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Behavioral Ecology and Sociobiology
Volume:
75
Issue:
9
ISSN:
0340-5443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mosquitoes can change their feeding behaviours based on past experiences, such as shifting from biting animals to biting humans or avoiding defensive hosts (Wolff & Riffell 2018J. Exp. Biol.221, jeb157131. (doi:10.1242/jeb.157131)). Dopamine is a critical neuromodulator for insects, allowing flexibility in their feeding preferences, but its role in the primary olfactory centre, the antennal lobe (AL), remains unclear (Vinaugeret al.2018Curr. Biol.28, 333–344.e8. (doi:10.1016/j.cub.2017.12.015)). It is also unknown whether mosquitoes can learn some odours and not others, or whether different species learn the same odour cues. We assayed aversive olfactory learning in four mosquito species with different host preferences, and found that they differentially learn odours salient to their preferred host. Mosquitoes that prefer humans learned odours found in mammalian skin, but not a flower odour, and a nectar-feeding species only learned a floral odour. Comparing the brains of these four species revealed significantly different innervation patterns in the AL by dopaminergic neurons. Calcium imaging in theAedes aegyptiAL and three-dimensional image analyses of dopaminergic innervation show that glomeruli tuned to learnable odours have significantly higher dopaminergic innervation. Changes in dopamine expression in the insect AL may be an evolutionary mechanism to adapt olfactory learning circuitry without changing brain structure and confer to mosquitoes an ability to adapt to new hosts.

     
    more » « less
  2. Abstract

    Floral microbes, including bacteria and fungi, alter nectar quality, thus changing pollinator visitation. Conversely, pollinator visitation can change the floral microbial community.

    Most studies on dispersal of floral microbes have focused on bees, ants or hummingbirds, yet Lepidoptera are important pollinators.

    We asked (a) where are microbes present on the butterfly body, (b) do butterflies transfer microbes while foraging, and (c) how does butterfly foraging affect microbial abundance on different floret structures.

    The tarsi and proboscis had significantly more microbes than the thorax in wild‐caughtGlaucopsyche lygdamus(Lepidoptera: Lycaenidae) andSpeyeria mormonia(Lepidoptera: Nymphalidae).Glaucopsyche lygdamus, a smaller‐bodied species, had fewer microbes thanS. mormonia.

    As a marker for microbes, we used a bacterium (Rhodococcus fascians,near NCBI Y11196) isolated from aS. mormoniathat was foraging for nectar, and examined its dispersal byG. lygdamusandS. mormoniavisiting florets ofPyrrocoma crocea(Asteraceae). Microbial dispersal among florets correlated positively with bacterial abundance in the donor floret. Dispersal also depended on butterfly species, age, and bacterial load carried by the butterfly.

    Recipient florets had less bacteria than donor florets. The nectaries had more bacteria than the anthers or the stigmas, while anthers and stigmas did not differ from each other. There was no differential transmission among floral organs.

    Lepidoptera thus act as vectors of floral microbes. Including Lepidoptera is thus crucial to an understanding of plant–pollinator–microbe interactions. Future studies should consider the role of vectored microbes in lepidopteran ecology and fitness.

     
    more » « less
  3. ABSTRACT

    Hummingbirds, a highly diverse avian family, are specialized vertebrate pollinators that feed upon carbohydrate-rich nectar to fuel their fast metabolism while consuming invertebrates to obtain protein. Previous work has found that morphologically diverse hummingbird communities exhibit higher diet specialization on floral resources than morphologically similar hummingbird communities. Due to the difficulties of studying avian diets, we have little understanding whether hummingbirds show similar patterns with their invertebrate prey. Here, we use DNA metabarcoding to analyze floral and invertebrate diets of 3 species of sympatric North American hummingbirds. We collected fecal samples from 89 Anna’s (Calypte anna), 39 Black-chinned (Archilochus alexandri), and 29 Calliope (Selasphorus calliope) hummingbirds in urban and rural localities as well as across an elevational gradient from sea level to 2,500 meters above sea level in California, USA. We found hummingbirds showed high dietary overlap in both invertebrate and plant resources, with few invertebrate and plant families common to most individuals and many families found in only a few individuals. Chironomidae was the most common invertebrate family across all species, and Rosaceae and Orobanchaceae were the most common plant families. Anna’s Hummingbirds had significantly higher invertebrate diet diversity than Black-chinned Hummingbirds when found at the same sites, but we found no difference in plant diet diversity among any of the 3 species. Hummingbirds in urban sites had higher plant diet diversity than in rural sites, but we found no effect of elevation on dietary richness. Our study shows how DNA metabarcoding can be used to non-invasively investigate previously unknown life-histories of well-studied birds, lending insight to community structure, function, and evolution.

     
    more » « less
  4. Abstract Background and Aims

    Floral volatiles, visual traits and rewards mediate attraction and defence in plant–pollinator and plant–herbivore interactions, but these floral traits might be altered by global warming through direct effects of temperature or longer-term impacts on plant resources. We examined the effect of warming on floral and leaf volatile emissions, floral morphology, plant height, nectar production, and oviposition by seed predators.

    Methods

    We used open-top chambers that warmed plants in the field by +2–3 °C on average (+6–11 °C increase in daily maxima) for 2–4 weeks across 1–3 years at three sites in Colorado, USA. Volatiles were sampled from two closely related species of subalpine Ipomopsis with different pollinators: Ipomopsis aggregata ssp. aggregata, visited mainly by hummingbirds, and Ipomopsis tenuituba ssp. tenuituba, often visited by hawkmoths.

    Key Results

    Although warming had no detected effects on leaf volatiles, the daytime floral volatiles of both I. aggregata and I. tenuituba responded in subtle ways to warming, with impacts that depended on the species, site and year. In addition to the long-term effect of warming, temperature at the time of sampling independently affected the floral volatile emissions of I. aggregata during the day and I. tenuituba at night. Warming had little effect on floral morphology for either species and it had no effect on nectar concentration, maximum inflorescence height or flower redness in I. aggregata. However, warming increased nectar production in I. aggregata by 41 %, a response that would attract more hummingbird visits, and it reduced oviposition by fly seed predators by ≥72 %.

    Conclusions

    Our results suggest that floral traits can show different levels of plasticity to temperature changes in subalpine environments, with potential effects on animal behaviours that help or hinder plant reproduction. They also illustrate the need for more long-term field warming studies, as shown by responses of floral volatiles in different ways to weeks of warming vs. temperature at the time of sampling.

     
    more » « less
  5. Abstract

    Mutualistic relationships, such as those between plants and pollinators, may be vulnerable to the local extinctions predicted under global environmental change. However, network theory predicts that plant–pollinator networks can withstand species loss if pollinators switch to alternative floral resources (rewiring). Whether rewiring occurs following species loss in natural communities is poorly known because replicated species exclusions are difficult to implement at appropriate spatial scales.

    We experimentally removed a hummingbird‐pollinated plant,Heliconia tortuosa, from within tropical forest fragments to investigate how hummingbirds respond to temporary loss of an abundant resource. Under therewiring hypothesis, we expected that behavioural flexibility would allow hummingbirds to use alternative resources, leading to decreased ecological specialization and reorganization of the network structure (i.e. pairwise interactions). Alternatively, morphological or behavioural constraints—such as trait‐matching or interspecific competition—might limit the extent to which hummingbirds alter their foraging behaviour.

    We employed a replicated Before‐After‐Control‐Impact experimental design and quantified plant–hummingbird interactions using two parallel sampling methods: pollen collected from individual hummingbirds (‘pollen networks’, created from >300 pollen samples) and observations of hummingbirds visiting focal plants (‘camera networks’, created from >19,000 observation hours). To assess the extent of rewiring, we quantified ecological specialization at the individual, species and network levels and examined interaction turnover (i.e. gain/loss of pairwise interactions).

    H. tortuosaremoval caused some reorganization of pairwise interactions but did not prompt large changes in specialization, despite the large magnitude of our manipulation (on average, >100 inflorescences removed in exclusion areas of >1 ha). Although some individual hummingbirds sampled through time showed modest increases in niche breadth followingHeliconiaremoval (relative to birds that did not experience resource loss), these changes were not reflected in species‐ and network‐level specialization metrics.

    Our results suggest that, at least over short time‐scales, animals may not necessarily shift to alternative resources after losing an abundant food resource—even in species thought to be highly opportunistic foragers, such as hummingbirds. Given that rewiring contributes to theoretical predictions of network stability, future studies should investigate why pollinators might not expand their diets after a local resource extinction.

     
    more » « less