skip to main content

Title: Placing the east-west North American aridity gradient in a multi-century context
Abstract

Instrumental records indicate a century-long trend towards drying over western North America and wetting over eastern North America. A continuation of these trends into the future would have significant hydroclimatic and socioeconomic consequences in both the semi-arid Southwest and humid East. Using tree-ring reconstructions and hydrologic simulations of summer soil moisture, we evaluate and contextualize the modern summer aridity gradient within its natural range of variability established over the past 600 years and evaluate the effects of observed and anthropogenic precipitation, temperature, and humidity trends. The 2001–2020 positive (wet east-dry west) aridity gradient was larger than any 20 year period since 1400 CE, preceded by the most negative (wet west-dry east) aridity gradient during 1976–1995, leading to a strong multi-decade reversal in aridity gradient anomalies that was rivaled only by a similar event in the late-16th century. The 2001–2020 aridity gradient was dominated by long-term summer precipitation increases in the Midwest and Northeast, with smaller contributions from more warming in the West than the East and spring precipitation decreases in the Southwest. Multi-model mean climate simulations from Coupled Model Intercomparison Project 6 experiments suggest anthropogenic climate trends should not have strongly affected the aridity gradient thus far. However, there more » is high uncertainty due to inter-model disagreement on anthropogenic precipitation trends. The recent strengthening of the observed aridity gradient, its increasing dependence on precipitation variability, and disagreement in modeled anthropogenic precipitation trends reveal significant uncertainties in how water resource availability will change across North America in the coming decades.

« less
Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10305271
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
11
Page Range or eLocation-ID:
Article No. 114043
ISSN:
1748-9326
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Global hydroclimatic changes from 1950 to 2018 are analyzed using updated data of land precipitation, streamfow, and an improved form of the Palmer Drought Severity Index. The historical changes are then compared with climate model-simulated response to external forcing to determine how much of the recent change is forced response. It is found that precipitation has increased from 1950 to 2018 over mid-high latitude Eurasia, most North America, Southeast South America, and Northwest Australia, while it has decreased over most Africa, eastern Australia, the Mediterranean region, the Middle East, and parts of East Asia, central South America, and the Pacifc coasts of Canada. Streamfow records largely confrm these precipitation changes. The wetting trend over Northwest Australia and Southeast South America is most pronounced in austral summer while the drying over Africa and wetting trend over mid-high latitude Eurasia are seen in all seasons. Coupled with the drying caused by rising surface temperatures, these precipitation changes have greatly increased the risk of drought over Africa, southern Europe, East Asia, eastern Australia, Northwest Canada, and southern Brazil. Global land precipitation and continental freshwater discharge show large interannual and inter-decadal variations, with negative anomalies during El Niño and following major volcanic eruptions inmore »1963, 1982, and 1991; whereas their decadal variations are correlated with the Interdecadal Pacifc Oscillation (IPO) with IPO’s warm phase associated with low land precipitation and continental discharge. The IPO and Atlantic multidecadal variability also dominate multidecadal variations in land aridity, accounting for 90% of the multidecadal variance. CMIP5 multi-model ensemble mean shows decreased precipitation and runoff and increased risk of drought during 1950–2018 over Southwest North America, Central America, northern and central South America (including the Amazon), southern and West Africa, the Mediterranean region, and Southeast Asia; while the northern mid-high latitudes, Southeast South America, and Northwest Australia see increased precipitation and runoff. The consistent spatial patterns between the observed changes and the model-simulated response suggest that many of the observed drying and wetting trends since 1950 may have resulted at least partly from historical external forcing. However, the drying over Southeast Asia and wetting over Northwest Australia are absent in the 21st century projections.« less
  2. Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical drymore »zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population.« less
  3. Mediterranean-type climates are defined by temperate, wet winters, and hot or warm dry summers and exist at the western edges of five continents in locations determined by the geography of winter storm tracks and summer subtropical anticyclones. The climatology, variability, and long-term changes in winter precipitation in Mediterranean-type climates, and the mechanisms for model-projected near-term future change, are analyzed. Despite commonalities in terms of location in the context of planetary-scale dynamics, the causes of variability are distinct across the regions. Internal atmospheric variability is the dominant source of winter precipitation variability in all Mediterranean-type climate regions, but only in the Mediterranean is this clearly related to annular mode variability. Ocean forcing of variability is a notable influence only for California and Chile. As a consequence, potential predictability of winter precipitation variability in the regions is low. In all regions, the trend in winter precipitation since 1901 is similar to that which arises as a response to changes in external forcing in the models participating in phase 5 of the Coupled Model Intercomparison Project. All Mediterranean-type climate regions, except in North America, have dried and the models project further drying over coming decades. In the Northern Hemisphere, dynamical processes are responsible:more »development of a winter ridge over the Mediterranean that suppresses precipitation and of a trough west of the North American west coast that shifts the Pacific storm track equatorward. In the Southern Hemisphere, mixed dynamic–thermodynamic changes are important that place a minimum in vertically integrated water vapor change at the coast and enhance zonal dry advection into Mediterranean-type climate regions inland.

    « less
  4. Climate in the Iberian Peninsula is impacted by both internal and external climate modes, which are expected to shift in position and intensity due to anthropogenic climate change. Examples of such modes include the North Atlantic Oscillation (NAO) and the East Atlantic mode (EA). Changes in the behavior in these regional climate modes could significantly alter water availability in the Iberian Peninsula, a region identified by model projections as particularly sensitive to future warming scenarios. There has been extensive research and paleoclimate reconstructions of the NAO and its impacts on Iberian climate. However, to date few paleoclimate records have been developed to evaluate the behavior of the EA over the late Holocene and into the present. The development of highly resolved regional paleoclimate records from Iberia is critical for improving the predictive capability of regional climate models under future warming scenarios and to determine the extent to which different teleconnection patterns are influencing climate. Here we present a near annually resolved stable carbon isotope (δ13C) and oxygen (δ18O) isotope time-series from three stalagmites from the Algarve region of southern Portugal from two caves within 2.3 km of each other. The southern coast of Portugal offers an ideal location to studymore »the behavior of the EA due to the modulation of storm tracks coming across the North Atlantic Ocean into Iberia associated with the EA. U/Th dating indicates that our composite record spans the last millennia continuously through 2018 CE. Two stalagmites (GIA-19-1 and C-18-1) stopped growing around 1600 CE, during a dry interval, and sample GIA-19-2 grew continuously since the 15th century. GIA-19-2, with sub-annual resolution, is compared to modern instrumental records to evaluate the influence of specific environmental controls, including temperature and precipitation amounts. Isotope data from all three stalagmites exhibit substantial multidecadal variability indicating relatively wet and dry intervals. Based on our initial results, it is likely that both temperature and precipitation amount effects are the dominant controls on isotopic variability in these stalagmites. Comparison of the GIA-19-2 oxygen isotope time-series with the instrumental index (1950 to present) and reconstructed index (1650 CE to present) of the EA mode shows strong coherence with both index records. Hence, multidecadal variability observed in our stalagmite isotope time series may provide insight into the historical behavior of the EA mode and its resulting impacts on southern Portuguese climate.« less
  5. Climate in the Iberian Peninsula is impacted by both internal and external climate modes, which are expected to shift in position and intensity due to anthropogenic climate change. Examples of such modes include the North Atlantic Oscillation (NAO) and the East Atlantic mode (EA). Changes in the behavior in these regional climate modes could significantly alter water availability in the Iberian Peninsula, a region identified by model projections as particularly sensitive to future warming scenarios. There has been extensive research and paleoclimate reconstructions of the NAO and its impacts on Iberian climate. However, to date few paleoclimate records have been developed to evaluate the behavior of the EA over the late Holocene and into the present. The development of highly resolved regional paleoclimate records from Iberia is critical for improving the predictive capability of regional climate models under future warming scenarios and to determine the extent to which different teleconnection patterns are influencing climate. Here we present a near annually resolved stable carbon isotope (δ13C) and oxygen (δ18O) isotope time-series from three stalagmites from the Algarve region of southern Portugal from two caves within 2.3 km of each other. The southern coast of Portugal offers an ideal location to studymore »the behavior of the EA due to the modulation of storm tracks coming across the North Atlantic Ocean into Iberia associated with the EA. U/Th dating indicates that our composite record spans the last millennia continuously through 2018 CE. Two stalagmites (GIA-19-1 and C-18-1) stopped growing around 1600 CE, during a dry interval, and sample GIA-19-2 grew continuously since the 15th century. GIA-19-2, with sub-annual resolution, is compared to modern instrumental records to evaluate the influence of specific environmental controls, including temperature and precipitation amounts. Isotope data from all three stalagmites exhibit substantial multidecadal variability indicating relatively wet and dry intervals. Based on our initial results, it is likely that both temperature and precipitation amount effects are the dominant controls on isotopic variability in these stalagmites. Comparison of the GIA-19-2 oxygen isotope time-series with the instrumental index (1950 to present) and reconstructed index (1650 CE to present) of the EA mode shows strong coherence with both index records. Hence, multidecadal variability observed in our stalagmite isotope time series may provide insight into the historical behavior of the EA mode and its resulting impacts on southern Portuguese climate.« less