skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Infusing theory into deep learning for interpretable reactivity prediction
Abstract Despite recent advances of data acquisition and algorithms development, machine learning (ML) faces tremendous challenges to being adopted in practical catalyst design, largely due to its limited generalizability and poor explainability. Herein, we develop a theory-infused neural network (TinNet) approach that integrates deep learning algorithms with the well-establishedd-band theory of chemisorption for reactivity prediction of transition-metal surfaces. With simple adsorbates (e.g., *OH, *O, and *N) at active site ensembles as representative descriptor species, we demonstrate that the TinNet is on par with purely data-driven ML methods in prediction performance while being inherently interpretable. Incorporation of scientific knowledge of physical interactions into learning from data sheds further light on the nature of chemical bonding and opens up new avenues for ML discovery of novel motifs with desired catalytic properties.  more » « less
Award ID(s):
1845531
PAR ID:
10305324
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Model instability remains a core challenge for data‐driven parameterizations, especially those developed with supervised algorithms, and rigorous methods to address it are lacking. Here, by integrating machine learning (ML) theory with climate physics, we demonstrate the importance of learning spatiallynon‐localdynamics using a 1D quasi‐biennial oscillation model with parameterized gravity waves (GW) as a testbed. While common offline metrics fail to identify shortcomings in learning non‐local dynamics, we show that the receptive field (RF) can identify instability a‐priori. We find that neural network‐based parameterizations, though predicting GW forcings from wind profiles with 99% accuracy, lead to unstable simulations when RFs are too small to capture non‐local dynamics. Additionally, we demonstrate that learning non‐local dynamics is crucial for the stability of a data‐driven spatiotemporalemulatorof the zonal wind field. This work underscores the need to integrate ML theory with physics in designing data‐driven algorithms for climate modeling. 
    more » « less
  2. AbstractComputational methods and machine learning (ML) are reshaping materials science by accelerating their discovery, design, and optimization. Traditional approaches such as density functional theory and molecular dynamics have been instrumental in studying materials at the atomic level. However, their high computational cost and, in certain cases, limited accuracy can restrict the scope ofin silicoexploration. ML promises to accelerate material property prediction and design. However, in many areas, the volume and fidelity of the data are critical barriers. Active learning can reduce the reliance on large data sets, and simulation has emerged as a critical tool for generating data on the fly. Despite these advances, challenges remain, particularly in data quality, model interpretability, and bridging the gap between computational predictions and experimental validation. Future research should develop automated frameworks capable of designing and testing materials for specific applications, and integrating ML with traditional simulations and experiments can contribute to this goal. Graphic abstract 
    more » « less
  3. Abstract The ground state electron density — obtainable using Kohn-Sham Density Functional Theory (KS-DFT) simulations — contains a wealth of material information, making its prediction via machine learning (ML) models attractive. However, the computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation, making it difficult to develop quantifiably accurate ML models that are applicable across many scales and system configurations. Here, we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data, while comprehensively sampling system configurations using thermalization. Our ML models are less reliant on heuristics, and being based on Bayesian neural networks, enable uncertainty quantification. We show that our models incur significantly lower data generation costs while allowing confident — and when verifiable, accurate — predictions for a wide variety of bulk systems well beyond training, including systems with defects, different alloy compositions, and at multi-million-atom scales. Moreover, such predictions can be carried out using only modest computational resources. 
    more » « less
  4. Generalization of machine learning (ML) surrogate models across distinct databases is underexplored, despite being crucial as retraining the entire model every time new data become available is inefficient. This study proposes an incremental learning methodology to improve ML models' prediction of seismic collapse of steel moment‐resisting frames (SMRFs) across distinct datasets. Three boosting algorithms, XGBoost, LightGBM, and CatBoost, were trained on a source dataset to generate surrogate ML models that can predict the SMRF's seismic response. Thereafter, the ML models were used to predict the response on a new (target) dataset of SMRFs that differ in geometric dimensions and design approaches. Initially, boosting models trained on one dataset performed poorly on another dataset, even if the datasets displayed similar characteristics and consistent feature importance rankings. Incorporation of incremental learning improved the prediction on the target dataset, but introduced catastrophic forgetting that reduced the effectiveness of the ML model on the source dataset, a problem mitigated with a rehearsal strategy. Incremental learning with rehearsal yields results comparable to those obtained by fully retraining with both source and target datasets, resulting in an effective method for ML transferability, without having to retrain entire databases and without reducing the effectiveness of ML models on the source database. 
    more » « less
  5. INTRODUCTION Solving quantum many-body problems, such as finding ground states of quantum systems, has far-reaching consequences for physics, materials science, and chemistry. Classical computers have facilitated many profound advances in science and technology, but they often struggle to solve such problems. Scalable, fault-tolerant quantum computers will be able to solve a broad array of quantum problems but are unlikely to be available for years to come. Meanwhile, how can we best exploit our powerful classical computers to advance our understanding of complex quantum systems? Recently, classical machine learning (ML) techniques have been adapted to investigate problems in quantum many-body physics. So far, these approaches are mostly heuristic, reflecting the general paucity of rigorous theory in ML. Although they have been shown to be effective in some intermediate-size experiments, these methods are generally not backed by convincing theoretical arguments to ensure good performance. RATIONALE A central question is whether classical ML algorithms can provably outperform non-ML algorithms in challenging quantum many-body problems. We provide a concrete answer by devising and analyzing classical ML algorithms for predicting the properties of ground states of quantum systems. We prove that these ML algorithms can efficiently and accurately predict ground-state properties of gapped local Hamiltonians, after learning from data obtained by measuring other ground states in the same quantum phase of matter. Furthermore, under a widely accepted complexity-theoretic conjecture, we prove that no efficient classical algorithm that does not learn from data can achieve the same prediction guarantee. By generalizing from experimental data, ML algorithms can solve quantum many-body problems that could not be solved efficiently without access to experimental data. RESULTS We consider a family of gapped local quantum Hamiltonians, where the Hamiltonian H ( x ) depends smoothly on m parameters (denoted by x ). The ML algorithm learns from a set of training data consisting of sampled values of x , each accompanied by a classical representation of the ground state of H ( x ). These training data could be obtained from either classical simulations or quantum experiments. During the prediction phase, the ML algorithm predicts a classical representation of ground states for Hamiltonians different from those in the training data; ground-state properties can then be estimated using the predicted classical representation. Specifically, our classical ML algorithm predicts expectation values of products of local observables in the ground state, with a small error when averaged over the value of x . The run time of the algorithm and the amount of training data required both scale polynomially in m and linearly in the size of the quantum system. Our proof of this result builds on recent developments in quantum information theory, computational learning theory, and condensed matter theory. Furthermore, under the widely accepted conjecture that nondeterministic polynomial-time (NP)–complete problems cannot be solved in randomized polynomial time, we prove that no polynomial-time classical algorithm that does not learn from data can match the prediction performance achieved by the ML algorithm. In a related contribution using similar proof techniques, we show that classical ML algorithms can efficiently learn how to classify quantum phases of matter. In this scenario, the training data consist of classical representations of quantum states, where each state carries a label indicating whether it belongs to phase A or phase B . The ML algorithm then predicts the phase label for quantum states that were not encountered during training. The classical ML algorithm not only classifies phases accurately, but also constructs an explicit classifying function. Numerical experiments verify that our proposed ML algorithms work well in a variety of scenarios, including Rydberg atom systems, two-dimensional random Heisenberg models, symmetry-protected topological phases, and topologically ordered phases. CONCLUSION We have rigorously established that classical ML algorithms, informed by data collected in physical experiments, can effectively address some quantum many-body problems. These rigorous results boost our hopes that classical ML trained on experimental data can solve practical problems in chemistry and materials science that would be too hard to solve using classical processing alone. Our arguments build on the concept of a succinct classical representation of quantum states derived from randomized Pauli measurements. Although some quantum devices lack the local control needed to perform such measurements, we expect that other classical representations could be exploited by classical ML with similarly powerful results. How can we make use of accessible measurement data to predict properties reliably? Answering such questions will expand the reach of near-term quantum platforms. Classical algorithms for quantum many-body problems. Classical ML algorithms learn from training data, obtained from either classical simulations or quantum experiments. Then, the ML algorithm produces a classical representation for the ground state of a physical system that was not encountered during training. Classical algorithms that do not learn from data may require substantially longer computation time to achieve the same task. 
    more » « less