skip to main content


Title: Unraveling the complexity of human behavior and urbanization on community vulnerability to floods
Abstract

Floods are among the costliest natural hazards and their consequences are expected to increase further in the future due to urbanization in flood-prone areas. It is essential that policymakers understand the factors governing the dynamics of urbanization to adopt proper disaster risk reduction techniques. Peoples’ relocation preferences and their perception of flood risk (collectively called human behavior) are among the most important factors that influence urbanization in flood-prone areas. Current studies focusing on flood risk assessment do not consider the effect of human behavior on urbanization and how it may change the nature of the risk. Moreover, flood mitigation policies are implemented without considering the role of human behavior and how the community will cope with measures such as buyout, land acquisition, and relocation that are often adopted to minimize development in flood-prone regions. Therefore, such policies may either be resisted by the community or result in severe socioeconomic consequences. In this study, we present a new Agent-Based Model (ABM) to investigate the complex interaction between human behavior and urbanization and its role in creating future communities vulnerable to flood events. We identify critical factors in the decisions of households to locate or relocate and adopt policies compatible with human behavior. The results show that when people are informed about the flood risk and proper incentives are provided, the demand for housing within 500-year floodplain may be reduced as much as 15% by 2040 for the case study considered. On the contrary, if people are not informed of the risk, 29% of the housing choices will reside in floodplains. The analyses also demonstrate that neighborhood quality—influenced by accessibility to highways, education facilities, the city center, water bodies, and green spaces, respectively—is the most influential factor in peoples’ decisions on where to locate. These results provide new insights that may be used to assist city planners and stakeholders in examining tradeoffs between costs and benefits of future land development in achieving sustainable and resilient cities.

 
more » « less
NSF-PAR ID:
10305331
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many urban coastal communities are experiencing more profound flood impacts due to accelerated sea level rise that sometimes exceed their capacity to protect the built environment. In such cases, relocation may serve as a more effective hazard mitigation and adaptation strategy. However, it is unclear how urban residents living in flood-prone locations perceive the possibility of relocation and under what circumstances they would consider moving. Understanding the factors affecting an individual’s willingness to relocate because of coastal flooding is vital for developing accessible and equitable relocation policies. The main objective of this study is to identify the key considerations that would prompt urban coastal residents to consider permanent relocation because of coastal flooding. We leverage survey data collected from urban areas along the East Coast, assessing attitudes toward relocation, and design an artificial neural network (ANN) and a random forest (RF) model to find patterns in the survey data and indicate which considerations impact the decision to consider relocation. We trained the models to predict whether respondents would relocate because of socioeconomic factors, past exposure and experiences with flooding, and their flood-related concerns. Analyses performed on the models highlight the importance of flood-related concerns that accurately predict relocation behavior. Some common factors among the model analyses are concerns with increasing crime, the possibility of experiencing one more flood per year in the future, and more frequent business closures resulting from flooding.

     
    more » « less
  2. Abstract

    Flooding is a function of hydrologic, climatologic, and land use characteristics. However, the relative contribution of these factors to flood risk over the long-term is uncertain. In response to this knowledge gap, this study quantifies how urbanization and climatological trends influenced flooding in the greater Houston region during Hurricane Harvey. The region—characterized by extreme precipitation events, low topographic relief, and clay-dominated soils—is naturally flood prone, but it is also one of the fastest growing urban areas in the United States. This rapid growth has contributed to increased runoff volumes and rates in areas where anthropogenic climate changes has also been shown to be contributing to extreme precipitation. To disentangle the relative contributions of urban development and climatic changes on flooding during Hurricane Harvey, we simulate catchment response using a spatially-distributed hydrologic model under 1900 and 2017 conditions. This approach provides insight into how timing, volume, and peak discharge in response to Harvey-like events have evolved over more than a century. Results suggest that over the past century, urban development and climate change have had a large impact on peak discharge at stream gauges in the Houston region, where development alone has increased peak discharges by 54% (±28%) and climate change has increased peak discharge by about 20% (±3%). When combined, urban development and climate change nearly doubled peak discharge (84% ±35%) in the Houston area during Harvey compared to a similar event in 1900, suggesting that land use change has magnified the effects of climate change on catchment response. The findings support a precautionary approach to flood risk management that explicitly considers how current land use decisions may impact future conditions under varying climate trends, particularly in low-lying coastal cities.

     
    more » « less
  3. García-Ayllón Veintimilla, Salvador (Ed.)
    Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979.We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters. 
    more » « less
  4. García-Ayllón Veintimilla, Salvador (Ed.)
    Historical information about floods is not commonly used in the US to inform land use planning decisions. Rather, the current approach to managing floods is based on static maps derived from computer simulations of the area inundated by floods of specified return intervals. These maps provide some information about flood hazard, but they do not reflect the underlying processes involved in creating a flood disaster, which typically include increased exposure due to building on flood-prone land, nor do they account for the greater hazard resulting from wildfire. We developed and applied an approach to analyze how exposure has evolved in flood hazard zones in Montecito, California, an area devastated by post-fire debris flows in January 2018. By combining historical flood records of the past 200 years, human development records of the past 100 years, and geomorphological understanding of debris flow generation processes, this approach allows us to look at risk as a dynamic process influenced by physical and human factors, instead of a static map. Results show that floods after fires, in particular debris flows and debris laden floods, are very common in Montecito (15 events in the last 200 years), and that despite policies discouraging developments in hazard areas, developments in hazard zones have increased substantially since Montecito joined the National Flood Insurance Program in 1979.We also highlight the limitation of using conventional Flood Insurance Rate Maps (FIRMs) to manage land use in alluvial fan areas such as Montecito. The knowledge produced in this project can help Montecito residents better understand how they came to be vulnerable to floods and identify action they are taking now that might increase or reduce their vulnerability to the next big flood. This science-history-centric approach to understand hazard and exposure evolution using geographic information systems (GIS) and historical records, is generalizable to other communities seeking to better understand the nature of the hazard they are exposed to and some of the root causes of their vulnerabilities, in other words, both the natural and social processes producing disasters. 
    more » « less
  5. Abstract

    Natural landscape heterogeneity and barriers resulting from urbanization can reduce genetic connectivity between populations. The evolutionary, demographic, and ecological effects of reduced connectivity may lead to population isolation and ultimately extinction. Alteration to the terrestrial and aquatic environment caused by urban influence can affect gene flow, specifically for stream salamanders who depend on both landscapes for survival and reproduction. To examine how urbanization affects a relatively common stream salamander species, we compared genetic connectivity ofEurycea bislineata(northern two‐lined salamander) populations within and between streams in an urban, suburban, and rural habitat around the New York City (NYC) metropolitan area. We report reduced genetic connectivity between streams within the urban landscape found to correspond with potential barriers to gene flow, that is, areas with more dense urbanization (roadways, industrial buildings, and residential housing). The suburban populations also exhibited areas of reduced connectivity correlated with areas of greater human land use and greater connectivity within a preserve protected from development. Connectivity was relatively high among neighboring rural streams, but a major roadway corresponded with genetic breaks even though the habitat contained more connected green space overall. Despite greater human disturbance across the landscape, urban and suburban salamander populations maintained comparable levels of genetic diversity to their rural counterparts. Yet small effective population size in the urban habitats yielded a high probability of loss of heterozygosity due to genetic drift in the future. In conclusion, urbanization impacted connectivity among stream salamander populations where its continual influence may eventually hinder population persistence for this native species in urban habitats.

     
    more » « less