Polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) hybrid systems typically use complex protein-protein interactions to facilitate direct transfer of intermediates between these multimodular megaenzymes. In the canal-associated neurons (CANs) of
Earth’s radiation budget and frequency and intensity of precipitation are influenced by aerosols with ice nucleation activity (INA), i.e., particles that catalyze the formation of ice. Some bacteria, fungi, and pollen are among the most efficient ice nucleators but the molecular basis of INA is poorly understood in most of them. Lysinibacillus parviboronicapiens (Lp) was previously identified as the first Gram-positive bacterium with INA. INA of Lp is associated with a secreted, nanometer-sized, non-proteinaceous macromolecule or particle. Here a combination of comparative genomics, transcriptomics, and a mutant screen showed that INA in Lp depends on a type I iterative polyketide synthase and a non-ribosomal peptide synthetase (PKS-NRPS). Differential filtration in combination with gradient ultracentrifugation revealed that the product of the PKS-NRPS is associated with secreted particles of a density typical of extracellular vesicles and electron microscopy showed that these particles consist in “pearl chain”-like structures not resembling any other known bacterial structures. These findings expand our knowledge of biological INA, may be a model for INA in other organisms for which the molecular basis of INA is unknown, and present another step towards unraveling the role of microbes in atmospheric processes.
more » « less- Award ID(s):
- 1754721
- PAR ID:
- 10305391
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- The ISME Journal
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1751-7362
- Format(s):
- Medium: X Size: p. 890-897
- Size(s):
- p. 890-897
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Caenorhabditis elegans , PKS-1 and NRPS-1 produce the nemamides, the only known hybrid polyketide-nonribosomal peptides biosynthesized by animals, through a poorly understood mechanism. Here, we use genome editing and mass spectrometry to map the roles of individual PKS-1 and NRPS-1 enzymatic domains in nemamide biosynthesis. Furthermore, we show that nemamide biosynthesis requires at least five additional enzymes expressed in the CANs that are encoded by genes distributed across the worm genome. We identify the roles of these enzymes and discover a mechanism for trafficking intermediates between a PKS and an NRPS. Specifically, the enzyme PKAL-1 activates an advanced polyketide intermediate as an adenylate and directly loads it onto a carrier protein in NRPS-1. This trafficking mechanism provides a means by which a PKS-NRPS system can expand its biosynthetic potential and is likely important for the regulation of nemamide biosynthesis. -
Abstract Ice-nucleation active (INA) bacteria can promote the growth of ice more effectively than any other known material. Using specialized ice-nucleating proteins (INPs), they obtain nutrients from plants by inducing frost damage and, when airborne in the atmosphere, they drive ice nucleation within clouds, which may affect global precipitation patterns. Despite their evident environmental importance, the molecular mechanisms behind INP-induced freezing have remained largely elusive. We investigate the structural basis for the interactions between water and the ice-nucleating protein InaZ from the INA bacterium
Pseudomonas syringae . Using vibrational sum-frequency generation (SFG) and two-dimensional infrared spectroscopy, we demonstrate that the ice-active repeats of InaZ adopt a β-helical structure in solution and at water surfaces. In this configuration, interaction between INPs and water molecules imposes structural ordering on the adjacent water network. The observed order of water increases as the interface is cooled to temperatures close to the melting point of water. Experimental SFG data combined with molecular-dynamics simulations and spectral calculations show that InaZ reorients at lower temperatures. This reorientation can enhance water interactions, and thereby the effectiveness of ice nucleation. -
Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is likely derived from a subset of the crystalline mineral phases in the ash. The INA of other mineral-based dusts can change when exposed to various gaseous and aqueous chemical species, many of which also interact with volcanic ash in the eruption plume and atmosphere. However, the effects of aqueous chemical aging on the INA of volcanic ash have not been explored. We show that the INA of two mineralogically distinct ash samples from Fuego and Astroni volcanoes is variably reduced following immersion in water or aqueous sulfuric acid for minutes to days. Aging in water decreases the INA of both ash samples by up to two orders of magnitude, possibly due to a reduction in surface crystallinity and cation availability accompanying leaching. Aging in sulfuric acid leads to minimal loss of INA for Fuego ash, which is proposed to reflect a quasi-equilibrium between leaching that removes ice-active sites and dissolution that reveals or creates new sites on the pyroxene phases present. Conversely, exposure to sulfuric acid reduces the INA of Astroni ash by one to two orders of magnitude, potentially through selective dissolution of ice-active sites associated with surface microtextures on some K-feldspar phases. Analysis of dissolved element concentrations in the aged ash leachates shows supersaturation of certain mineral species which could have precipitated and altered the INA of the ash. These results highlight the key role that leaching, dissolution, and precipitation likely play in the aqueous aging of volcanic ash with respect to its INA. Finally, we discuss the implications for understanding the nature and reactivity of ice-active sites on volcanic ash and its role in influencing cloud properties in the atmosphere.more » « less
-
Abstract. Decaying vegetation was determined to be a potentially important source ofatmospheric ice nucleation particles (INPs) in the early 1970s. The bacteriumPseudomonas syringae was the first microorganism with ice nucleationactivity (INA) isolated from decaying leaf litter in 1974. However, the icenucleation characteristics of P. syringae are not compatible withthe characteristics of leaf litter-derived INPs since the latter were foundto be sub-micron in size, while INA of P. syringae depends on muchlarger intact bacterial cells. Here we determined the cumulative icenucleation spectrum and microbial community composition of the historic leaflitter sample 70-S-14 collected in 1970 that conserved INA for 48 years. Themajority of the leaf litter-derived INPs were confirmed to be sub-micron insize and to be sensitive to boiling. Culture-independent microbial communityanalysis only identified Pseudomonas as potential INA.Culture-dependent analysis identified one P. syringae isolate, twoisolates of the bacterial species Pantoea ananatis, and one fungalisolate of Mortierella alpina as having INA among 1170 bacterialcolonies and 277 fungal isolates, respectively. Both Pa. ananatisand M. alpina are organisms that produce heat-sensitive sub-micronINPs. They are thus both likely sources of the INPs present in sample 70-S-14and may represent important terrestrial sources of atmospheric INPs, aconclusion that is in line with other recent results obtained in regard toINPs from soil, precipitation, and the atmosphere.more » « less
-
Microbial natural products are a major source of bioactive compounds for drug discovery. Among these molecules, nonribosomal peptides (NRPs) represent a diverse class of natural products that include antibiotics, immunosuppressants, and anticancer agents. Recent breakthroughs in natural product discovery have revealed the chemical structure of several thousand NRPs. However, biosynthetic gene clusters (BGCs) encoding them are known only for a few hundred compounds. Here, we developed Nerpa, a computational method for the high-throughput discovery of novel BGCs responsible for producing known NRPs. After searching 13,399 representative bacterial genomes from the RefSeq repository against 8368 known NRPs, Nerpa linked 117 BGCs to their products. We further experimentally validated the predicted BGC of ngercheumicin from Photobacterium galatheae via mass spectrometry. Nerpa supports searching new genomes against thousands of known NRP structures, and novel molecular structures against tens of thousands of bacterial genomes. The availability of these tools can enhance our understanding of NRP synthesis and the function of their biosynthetic enzymes.more » « less