Proteins from the bacterial small multidrug resistance (SMR) family are proton-coupled exporters of diverse antiseptics and antimicrobials, including polyaromatic cations and quaternary ammonium compounds. The transport mechanism of the Escherichia coli transporter, EmrE, has been studied extensively, but a lack of high-resolution structural information has impeded a structural description of its molecular mechanism. Here, we apply a novel approach, multipurpose crystallization chaperones, to solve several structures of EmrE, including a 2.9 Å structure at low pH without substrate. We report five additional structures in complex with structurally diverse transported substrates, including quaternary phosphonium, quaternary ammonium, and planar polyaromatic compounds. These structures show that binding site tryptophan and glutamate residues adopt different rotamers to conform to disparate structures without requiring major rearrangements of the backbone structure. Structural and functional comparison to Gdx-Clo, an SMR protein that transports a much narrower spectrum of substrates, suggests that in EmrE, a relatively sparse hydrogen bond network among binding site residues permits increased sidechain flexibility.
more »
« less
Asymmetric protonation of glutamate residues drives a preferred transport pathway in EmrE
EmrE is anEscherichia colimultidrug efflux pump and member of the small multidrug resistance (SMR) family that transports drugs as a homodimer by harnessing energy from the proton motive force. SMR family transporters contain a conserved glutamate residue in transmembrane 1 (Glu14 in EmrE) that is required for binding protons and drugs. Yet the mechanism underlying proton-coupled transport by the two glutamate residues in the dimer remains unresolved. Here, we used NMR spectroscopy to determine acid dissociation constants (pKa) for wild-type EmrE and heterodimers containing one or two Glu14 residues in the dimer. For wild-type EmrE, we measured chemical shifts of the carboxyl side chain of Glu14 using solid-state NMR in lipid bilayers and obtained unambiguous evidence on the existence of asymmetric protonation states. Subsequent measurements of pKavalues for heterodimers with a single Glu14 residue showed no significant differences from heterodimers with two Glu14 residues, supporting a model where the two Glu14 residues have independent pKavalues and are not electrostatically coupled. These insights support a transport pathway with well-defined protonation states in each monomer of the dimer, including a preferred cytoplasmic-facing state where Glu14 is deprotonated in monomer A and protonated in monomer B under pH conditions in the cytoplasm ofE. coli. Our findings also lead to a model, hop-free exchange, which proposes how exchangers with conformation-dependent pKavalues reduce proton leakage. This model is relevant to the SMR family and transporters comprised of inverted repeat domains.
more »
« less
- Award ID(s):
- 1902449
- PAR ID:
- 10305545
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 41
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2110790118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.more » « less
-
Abstract The roles of local interactions in the laboratory evolution of a highly active, computationally designed retroaldolase (RA) are examined. Partial Order Optimum Likelihood (POOL) is used to identify catalytically important amino acid interactions in several RA95 enzyme variants. The series RA95.5, RA95.5–5, RA95.5–8, and RA95.5–8F, representing progress along an evolutionary trajectory with increasing activity, is examined. Computed measures of coupling between charged states of residues show that, as evolution proceeds and higher activities are achieved, electrostatic coupling between the biochemically active amino acids and other residues is increased. In silico residue scanning suggests multiple coupling partners for the catalytic lysine K83. The effects of two predicted partners, Y51 and E85, are tested using site‐directed mutagenesis and kinetic analysis of the variants Y51F and E85Q. The Y51F variants show decreases inkcatrelative to wild type, with the greatest losses observed for the more evolved constructs; they also exhibit significant decreases inkcat/KMacross the series. Only modest decreases inkcat/KMare observed for the E85Q variants with little effect onkcat. Computed metrics of the degree of coupling between protonation states rise significantly as evolution proceeds and catalytic turnover rate increases. Specifically, the charge state of the catalytic lysine K83 becomes more strongly coupled to those of other amino acids as the enzyme evolves to a better catalyst.more » « less
-
Removing glutamate from the synaptic cleft is vital for proper function of the brain. Excitatory amino acid transporters mediate this process by uptaking the neurotransmitter from the synaptic cleft back to the cell after its release. The archaeal homolog, GltPh, an aspartate transporter fromPyrococcus horikoshii, presents the best structurally characterized model for this family of transporters. In order to transport, GltPhundergoes elevator-like conformational changes between inward-facing (IF) and outward-facing (OF) states. Here, we characterize, at an atomic level, the OF⇌IF transition of GltPhin differentapo/bound states using a combination of ensemble-based enhanced sampling techniques, employing more than two thousand of coupled simulation replicas of membrane-embedded GltPh. The resulting free-energy profiles portray the transition ofapo/bound states as a complex four-stage process, while sodium binding alone locks the structure in one of its states. Along the transition, the transport domain (TD) disengages from the scaffold domain (SD), allowing it to move as a piston sliding vertically with respect to the membrane during the elevator-like motion of TD. Lipid interactions with residues comprising the SD–TD interface directly influence the large-scale conformational changes and, consequently, the energetics of transport. Structural intermediates formed during the transition leak water molecules and may correlate to the uncoupled Cl−ion conductance observed experimentally in both prokaryotic and mammalian glutamate transporters. Mechanistic insights obtained from our study provide a structural framework for better development of therapeutic for neurological disorders.more » « less
-
Interactions in enzymes between catalytic and neighboring amino acids and how these interactions facilitate catalysis are examined. In examples from both natural and designed enzymes, it is shown that increases in catalytic rates may be achieved through elongation of the buffer range of the catalytic residues; such perturbations in the protonation equilibria are, in turn, achieved through enhanced coupling of the protonation equilibria of the active ionizable residues with those of other ionizable residues. The strongest coupling between protonation states for a pair of residues that deprotonate to form an anion (or a pair that accept a proton to form a cation) is achieved when the difference in the intrinsic pKas of the two residues is approximately within 1 pH unit. Thus, catalytic aspartates and glutamates are often coupled to nearby acidic residues. For an anion-forming residue coupled to a cation-forming residue, the elongated buffer range is achieved when the intrinsic pKa of the anion-forming residue is higher than the intrinsic pKa of the (conjugate acid of the) cation-forming residue. Therefore, the high pKa, anion-forming residues tyrosine and cysteine make good coupling partners for catalytic lysine residues. For the anion–cation pairs, the optimum difference in intrinsic pKas is a function of the energy of interaction between the residues. For the energy of interaction ε expressed in units of (ln 10)RT, the optimum difference in intrinsic pKas is within ∼1 pH unit of ε.more » « less
An official website of the United States government
