With over half of the world’s population living in cities, there is mounting evidence indicating that investments in urban sustainability can deliver high returns on socioeconomic and environmental fronts. Current scholarship on urban agriculture (UA) reports a wide range of benefits which have been shown to vary with the scale and type of benefit examined. Notably, most city-scale studies do not align benefits of UA with locally meaningful goals. We fill this gap by conducting a city-scale analysis for Phoenix, the fifth largest city in the USA by population, and evaluate these benefits based on their ability to contribute to select desired outcomes specified in Phoenix’s 2050 Sustainability Goals: the elimination of food deserts, provision of green open space, and energy and CO2emissions savings from buildings. We consider three types of surfaces for UA deployment—undeveloped vacant lots, flat rooftops, and building façades—and find that the existing building stock provides 71% of available UA space in the study area. The estimated total food supply from UA is 183 000 tons per year, providing local produce in all existing food deserts of Phoenix, and meeting 90% of current annual consumption of fresh produce based on national per capita consumption patterns. UA would also add green open space and reduce by 60% the number of block groups underserved by public parks. Rooftop deployment of UA could reduce energy use in buildings and has the potential to displace more than 50 000 tons of CO2per year. Our work highlights the importance of combining a data-driven framework with local information to address place-based sustainability goals and can be used as a template for city-scale evaluations of UA in alternate settings.
If the material intensive enterprises in an urban area of several million people shared physical resources that might otherwise be wasted, what environmental and public benefits would result? This study develops an algorithm based on lifecycle assessment tools for determining a city’s
- Award ID(s):
- 1706097
- PAR ID:
- 10305793
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 075003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract A differentiated urban metabolism methodology is developed to quantify inequality and inform social equity in urban infrastructure strategies aimed at mitigating local in-boundary PM2.5 and co-beneficially reducing transboundary greenhouse gas (GHG) emissions. The method differentiates community-wide local PM2.5 and transboundary GHG emission contributions by households of different income strata, alongside commercial and industrial activities. Applied in three Indian cities (Delhi, Coimbatore, and Rajkot) through development of new data sets, method yields key insights that across all three cities, top-20% highest-income households dominated motorized transportation, electricity, and construction activities, while poorest-20% homes dominated biomass and kerosene use, resulting in the top-20% households contributing more than three times GHGs as the bottom-20% homes. Further, after including commercial and industrial users, top-20% households contributed as much or more in-boundary PM2.5 emissions than
commercial ORall industrial emitters (e.g. Delhi’s top-20% homes contributed 21% of in-boundary PM2.5 similar to industries at 21%. These results enabled co-benefit analysis of various infrastructure transition strategies on the horizon, finding only three could yield both significant GHG and PM2.5 reductions (>2%-each): (a) Modest 10% efficiency improvements among top-20% households, industry and commercial sectors, requiring a focus on wealthiest homes; (b) Phasing out all biomass and kerosene use within cities (impacting poorest); (c) Replacing gas and diesel vehicles with renewable electric vehicles. The differentiated PM2.5 and GHG emissions data-informed social equity in the design of the three co-beneficial infrastructure transitions by: (a)-prioritizing free/subsidized clean cooking fuels to poorest homes; (b)-increasing electricity block rates and behavioral nudging for wealthiest homes; and, (c)-prioritizing electrification of mass transit and promoting electric two-wheelers ahead of providing subsidies for electric cars, where the free-rider phenomenon can occur, which benefits wealthiest homes. The methodology is broadly translatable to cities worldwide, while the policy insights are relevant to rapidly urbanizing Asia and Africa to advance clean, low-carbon urban infrastructure transitions.all -
In this article, I describe Mumbai’s sea as an “anthroposea” – a sea made with ongoing anthropogenic processes across landwaters – to draw attention to the ways in which it troubles both urban planning and the making of environmental futures. I focus on three moments in which Mumbai’s more-than-human life now emerges in the anthroposea. First, I describe the surprising proliferations of lobsters, gulls, and fishers in a sewage outfall. Second, I draw attention to the city’s flourishing flamingo population amidst industrial effluents in the city’s industrial zone. Finally, the article floats towards a popular city beach where citizen scientists at Marine Life of Mumbai show the ways in which the city’s phenomenal biodiversity is making homes in and with the city’s plastic waste. I argue that these ongoing and dynamic relations between urban waste and more-than-human life make unstable and tenuous the modernist distinctions of nature/culture on which environmental and urban projects depend. The anthroposea does not easily permit the making of near futures. Instead, by crossing spatial scales and epistemological boundaries, the anthroposea holds the city and its citizens in the muddy materialities of an ongoing present; a present in which the vitalities of waste are intransigent, permanent, and generate life in the city’s landwaters.
-
Abstract We estimate the lifetime magnitude and distribution of the private and public benefits and costs of currently installed distributed solar PV systems in the United States. Using data for recently-installed systems, we estimate the balance of benefits and costs associated with installing a non-utility solar PV system today. We also study the geographical distribution of the various subsidies that are made available to owners of rooftop solar PV systems, and compare it to distributions of population and income. We find that, after accounting for federal subsidies and local rebates and assuming a discount rate of 7%, the private benefits of new installations will exceed private costs only in seven of the 19 states for which we have data and only if customers can sell excess power to the electric grid at the retail price. These states are characterized by abundant sunshine (California, Texas and Nevada) or by high electricity prices (New York). Public benefits from reduced air pollution and climate change impact exceed the costs of the various subsidies offered system owners for less than 10% of the systems installed, even assuming a 2% discount rate. Subsidies flowed disproportionately to counties with higher median incomes in 2006. In 2014, the distribution of subsidies was closer to that of population income, but subsidies still flowed disproportionately to the better-off. The total, upfront, subsidy per kilowatt of installed capacity has fallen from $5200 in 2006 to $1400 in 2014, but the absolute magnitude of subsidy has soared as installed capacity has grown explosively. We see considerable differences in the balance of costs and benefits even within states, indicating that local factors such as system price and solar resource are important, and that policies (e.g. net metering) could be made more efficient by taking local conditions into account.
-
Small and medium sized enterprises use the cloud for running online, user-facing, tail latency sensitive applications with well-defined fixed monthly budgets. For these applications, adequate system capacity must be provisioned to extract maximal performance despite the challenges of uncertainties in load and request-sizes. In this paper, we address the problem of capacity provisioning under fixed budget constraints with the goal of minimizing tail latency. To tackle this problem, we propose building systems using a heterogeneous mix of low latency expensive resources and cheap resources that provide high throughput per dollar. As load changes through the day, we use more faster resources to reduce tail latency during low load periods and more cheaper resources to handle the high load periods. To achieve these tail latency benefits, we introduce novel heterogeneity-aware scheduling and autoscaling algorithms that are designed for minimizing tail latency. Using software prototypes and by running experiments on the public cloud, we show that our approach can outperform existing capacity provisioning systems by reducing the tail latency by as much as 45% under fixed-budget settings.more » « less