skip to main content

Title: Possible future scenarios in the gateways to the Arctic for Subarctic and Arctic marine systems: II. prey resources, food webs, fish, and fisheries

Climate change impacts are pronounced at high latitudes, where warming, reduced sea-ice-cover, and ocean acidification affect marine ecosystems. We review climate change impacts on two major gateways into the Arctic: the Bering and Chukchi seas in the Pacific and the Barents Sea and Fram Strait in the Atlantic. We present scenarios of how changes in the physical environment and prey resources may affect commercial fish populations and fisheries in these high-latitude systems to help managers and stakeholders think about possible futures. Predicted impacts include shifts in the spatial distribution of boreal species, a shift from larger, lipid-rich zooplankton to smaller, less nutritious prey, with detrimental effects on fishes that depend on high-lipid prey for overwinter survival, shifts from benthic- to pelagic-dominated food webs with implications for upper trophic levels, and reduced survival of commercially important shellfish in waters that are increasingly acidic. Predicted changes are expected to result in disruptions to existing fisheries, the emergence of new fisheries, new challenges for managing transboundary stocks, and possible conflicts among resource users. Some impacts may be irreversible, more severe, or occur more frequently under anthropogenic climate change than impacts associated with natural variability, posing additional management challenges.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ICES Journal of Marine Science
Medium: X Size: p. 3017-3045
["p. 3017-3045"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

    more » « less
  2. Abstract

    Arctic climate change poses serious threats to polar bears (Ursus maritimus) as reduced sea ice makes seal prey inaccessible and marine ecosystems undergo bottom‐up reorganization. Polar bears’ elongated skulls and reduced molar dentition, as compared to their sister species the grizzly bear (Ursus arctos), are adaptations associated with hunting seals on sea ice and a soft, lipid‐rich diet of blubber and meat. With significant declines in sea ice, it is unclear if and how polar bears may be altering their diets. Clarifying polar bear dietary responses to changing climates, both today and in the past, is critical to proper conservation and management of this apex predator. This is particularly important when a dietary strategy may be maladaptive. Here, we test the hypothesis that hard‐food consumption (i.e., less preferred foods including bone), inferred from dental microwear texture analysis, increased with Arctic warming. We find that polar bears demonstrate a conserved absence of hard‐object feeding in Alaska through time (including approximately 1000 years ago), until the 21st century, consistent with a highly conserved and specialized diet of soft blubber and flesh. Notably, our results also suggest that some 21st‐century polar bears may be consuming harder foods (e.g., increased carcass utilization, terrestrial foods including garbage), despite having skulls and metabolisms poorly suited for such a diet. Prior to the 21st century, only polar bears with larger mandibles demonstrated increased hard‐object feeding, though to a much lower degree than closely related grizzly bears which regularly consume mechanically challenging foods. Polar bears, being morphologically specialized, have biomechanical constraints which may limit their ability to consume mechanically challenging diets, with dietary shifts occurring only under the most extreme scenarios. Collectively, the highly specialized diets and cranial morphology of polar bears may severely limit their ability to adapt to a warming Arctic.

    more » « less
  3. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  4. Abstract

    Recent climate change has caused declines in ice coverage which have lengthened the open water season in the Arctic and increased access to resources and shipping routes. These changes have resulted in more vessel activity in seasonally ice-covered regions. While traffic is increasing in the ice-free season, the amount of vessel activity in the marginal ice zone (ice concentration 15–80%) or in pack ice (>80% concentration) remains unclear. Understanding patterns of vessel activities in ice is important given increased safety challenges and environmental impacts. Here, we couple high-resolution ship tracking information with sea ice thickness and concentration data to quantify vessel activity in ice-covered areas of the Pacific Arctic (northern Bering, Chukchi, and western Beaufort Seas). This region is a geo-strategically critical area that contains globally important commercial fisheries and serves as a corridor for Arctic access for wildlife and vessels. We find that vessel traffic in the marginal ice zone is widely distributed across the study area while vessel traffic in pack ice is concentrated along known shipping routes and in areas of natural resource development. Of the statistically significant relationships between vessel traffic and both sea ice concentration and thickness, over 99% are negative, indicating that increasing sea ice is associated with decreasing vessel traffic on a monthly time scale. Furthermore, there is substantial vessel traffic in areas of high concentration for bowhead whales (Balaena mysticetus), and traffic in these areas increased four-fold during the study period. Fishing vessels dominate vessel traffic at low ice concentrations, but vessels categorized as Other, likely icebreakers, are the most common vessel type in pack ice. These findings indicate that vessel traffic in areas of ice coverage is influenced by distant policy and resource development decisions which should be taken into consideration when trying to predict future vessel-ice interactions in a changing climate.

    more » « less
  5. Abstract

    Sea turtles present a model for the potential impacts of climate change on imperiled species, with projected warming generating concern about their persistence. Various sea turtle life-history traits are affected by temperature; most strikingly, warmer egg incubation temperatures cause female-biased sex ratios and higher embryo mortality. Predictions of sea turtle resilience to climate change are often focused on how resulting male limitation or reduced offspring production may affect populations. In the present article, by reviewing research on sea turtles, we provide an overview of how temperature impacts on incubating eggs may cascade through life history to ultimately affect population viability. We explore how sex-specific patterns in survival and breeding periodicity determine the differences among offspring, adult, and operational sex ratios. We then discuss the implications of skewed sex ratios for male-limited reproduction, consider the negative correlation between sex ratio skew and genetic diversity, and examine consequences for adaptive potential. Our synthesis underscores the importance of considering the effects of climate throughout the life history of any species. Lethal effects (e.g., embryo mortality) are relatively direct impacts, but sublethal effects at immature life-history stages may not alter population growth rates until cohorts reach reproductive maturity. This leaves a lag during which some species transition through several stages subject to distinct biological circumstances and climate impacts. These perspectives will help managers conceptualize the drivers of emergent population dynamics and identify existing knowledge gaps under different scenarios of predicted environmental change.

    more » « less