skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 17 until 8:00 AM ET on Saturday, May 18 due to maintenance. We apologize for the inconvenience.


Title: A Nonheme Mononuclear {FeNO} 7 Complex that Produces N 2 O in the Absence of an Exogenous Reductant
Abstract

A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

 
more » « less
NSF-PAR ID:
10306258
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
133
Issue:
39
ISSN:
0044-8249
Page Range / eLocation ID:
p. 21728-21734
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new nonheme iron(II) complex, FeII(Me3TACN)((OSiPh2)2O) (1), is reported. Reaction of1with NO(g)gives a stable mononitrosyl complex Fe(NO)(Me3TACN)((OSiPh2)2O) (2), which was characterized by Mössbauer (δ=0.52 mm s−1, |ΔEQ|=0.80 mm s−1), EPR (S=3/2), resonance Raman (RR) and Fe K‐edge X‐ray absorption spectroscopies. The data show that2is an {FeNO}7complex with anS=3/2 spin ground state. The RR spectrum (λexc=458 nm) of2combined with isotopic labeling (15N,18O) reveals ν(N‐O)=1680 cm−1, which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm−1). Complex2reacts rapidly with H2O in THF to produce the N‐N coupled product N2O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2O in the absence of an exogenous reductant.

     
    more » « less
  2. Abstract

    Co‐crystallization of the spin‐crossover (SCO) cationic complex, [Fe(1‐bpp)2]2+(1‐bpp=2,6‐bis(pyrazol‐1‐yl)pyridine) with fractionally charged organic anion TCNQδ−(0<δ<1) afforded hybrid materials [Fe(1‐bpp)2](TCNQ)3.5 ⋅ 3.5MeCN (1) and [Fe(1‐bpp)2](TCNQ)4 ⋅ 4DCE (2), where TCNQ=7,7,8,8‐tetracyanoquinodimethane, MeCN=acetonitrile, and DCE=1,2‐dichloroethane. Both materials exhibit semiconducting behavior, with the room‐temperature conductivity values of 1.1×10−4 S/cm and 1.7×10−3 S/cm, respectively. The magnetic behavior of both complexes exhibits strong dependence on the content of the interstitial solvent. Complex1undergoes a gradual temperature‐driven SCO, with the midpoint temperature ofT1/2=234 K. The partial solvent loss by1leads to the increase in theT1/2value while complete desolvation renders the material high‐spin (HS) in the entire studied temperature range. In the case of2, the solvated complex shows a gradual SCO withT1/2=166 K only when covered with a mother liquid, while the facile loss of interstitial solvent, even at room temperature, leads to the HS‐only behavior.

     
    more » « less
  3. Abstract

    S/N crosstalk species derived from the interconnected reactivity of H2S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO) and perthionitrite (SSNO) to yield the dinitrosyl iron complex [Fe(NO)2(S5)]. In the reaction of FeCl2with SNOwe were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2(NO)(SH)], which was characterized by X‐ray crystallography. We also show that [Fe(NO)2(S5)]is a simple synthon for nitrosylated Fe−S clusters via its reduction with PPh3to yield Roussin's Red Salt ([Fe2S2(NO)4]2−), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe−S motifs.

     
    more » « less
  4. Abstract

    S/N crosstalk species derived from the interconnected reactivity of H2S and NO facilitate the transport of reactive sulfur and nitrogen species in signaling, transport, and regulatory processes. We report here that simple Fe2+ions, such as those that are bioavailable in the labile iron pool (LIP), react with thionitrite (SNO) and perthionitrite (SSNO) to yield the dinitrosyl iron complex [Fe(NO)2(S5)]. In the reaction of FeCl2with SNOwe were able to isolate the unstable intermediate hydrosulfido mononitrosyl iron complex [FeCl2(NO)(SH)], which was characterized by X‐ray crystallography. We also show that [Fe(NO)2(S5)]is a simple synthon for nitrosylated Fe−S clusters via its reduction with PPh3to yield Roussin's Red Salt ([Fe2S2(NO)4]2−), which highlights the role of S/N crosstalk species in the assembly of fundamental Fe−S motifs.

     
    more » « less
  5. Abstract

    Dinitrogen coordination to iron centers underpins industrial and biological fixation in the Haber–Bosch process and by the FeM cofactors in the nitrogenase enzymes. The latter employ local high‐spin metal centers; however, iron–dinitrogen coordination chemistry remains dominated by low‐valent states, contrasting the enzyme systems. Here, we report a high‐spin mixed‐valentcis‐(μ‐1,2‐dinitrogen)diiron(I/II) complex [(FeBr)2(μ‐N2)Lbis](2), where [Lbis]is a bis(β‐diketiminate) cyclophane. Field‐applied Mössbauer spectra, dc and ac magnetic susceptibility measurements, and computational methods support a delocalizedS=7/2Fe2N2unit withD=−5.23 cm−1and consequent slow magnetic relaxation.

     
    more » « less