skip to main content

Title: Current-induced picosecond magnetization dynamics in a Ta/CoFeB/MgO hall bar
Abstract

Time-resolved Kerr microscopy (TRSKM) has been used to explore the small amplitude picosecond magnetization dynamics induced by spin–orbit torques in a Ta(4 nm)/Co40Fe40B20(1 nm)/MgO(1.6 nm)/Ta(1 nm) Hall bar structure. The time dependent polar magneto optical Kerr effect was recorded following injection of a current pulse of 70 ps duration. Macrospin simulations provide a reasonable description of the precession and a transient background response as the field strength and current polarity are varied, while confirming that the in-plane spin–orbit torque is dominant within this system. Increasing the current density within the simulations leads to coherent magnetization reversal. Inclusion of a modest in-plane bias field is found to reduce both the switching current and the time required for switching. The orientation of the in-plane field relative to the direction of the current determines whether the magnetization can be switched backwards and forwards by current pulses of the same or opposite polarity.

Authors:
; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10306272
Journal Name:
Journal of Physics D: Applied Physics
Volume:
52
Issue:
35
Page Range or eLocation-ID:
Article No. 355003
ISSN:
0022-3727
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interfacial Dzyaloshinskii-Moriya interaction (DMI) holds promises for design and control of chiral spin textures in low-dimensional magnets with efficient current-driven dynamics. Recently, an interlayer DMI has been found to exist across magnetic multilayers with a heavy-metal spacer between magnetic layers. This opens the possibility of chirality in these three-dimensional magnetic structures. Here we show the existence of the interlayer DMI in a synthetic antiferromagnetic multilayer with both inversion and in-plane asymmetry. We analyse the interlayer DMI’s effects on the magnetization and the current-induced spin-orbit torque (SOT) switching of magnetization through a combination of experimental and numerical studies. The chiral nature of the interlayer DMI leads to an asymmetric SOT switching of magnetization under an in-plane magnetic field. Our work paves the way for further explorations on controlling chiral magnetizations across magnetic multilayers through SOTs, which can provide a new path in the design of SOT devices.

  2. Switching of magnetization by spin–orbit torque in the (Ga,Mn)(As,P) film was studied with currents along ⟨100⟩ crystal directions and an in-plane magnetic field bias. This geometry allowed us to identify the presence of two independent spin–orbit-induced magnetic fields: the Rashba field and the Dresselhaus field. Specifically, we observe that when the in-plane bias field is along the current (I[Formula: see text]H bias ), switching is dominated by the Rashba field, while the Dresselhaus field dominates magnetization reversal when the bias field is perpendicular to the current (I ⊥ H bias ). In our experiments, the magnitudes of the Rashba and Dresselhaus fields were determined to be 2.0 and 7.5 Oe, respectively, at a current density of 8.0 × 10 5 A/cm 2 .
  3. Spin currents are used to write information in magnetic random access memory (MRAM) devices by switching the magnetization direction of one of the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) nanopillar. Different physical mechanisms of conversion of charge current to spin current can be used in two-terminal and three-terminal device geometries. In two-terminal devices, charge-to-spin conversion occurs by spin filtering in the MTJ's ferromagnetic electrodes and present day MRAM devices operate near the theoretically expected maximum charge-to-spin conversion efficiency. In three-terminal devices, spin–orbit interactions in a channel material can also be used to generate large spin currents. In this Perspective article, we discuss charge-to-spin conversion processes that can satisfy the requirements of MRAM technology. We emphasize the need to develop channel materials with larger charge-to-spin conversion efficiency—that can equal or exceed that produced by spin filtering—and spin currents with a spin polarization component perpendicular to the channel interface. This would enable high-performance devices based on sub-20 nm diameter perpendicularly magnetized MTJ nanopillars without need of a symmetry breaking field. We also discuss MRAM characteristics essential for CMOS integration. Finally, we identify critical research needs for charge-to-spin conversion measurements and metrics that can be used to optimize device channel materials andmore »interface properties prior to full MTJ nanopillar device fabrication and characterization.« less
  4. Abstract

    Current-induced spin-orbit torques (SOTs) are of interest for fast and energy-efficient manipulation of magnetic order in spintronic devices. To be deterministic, however, switching of perpendicularly magnetized materials by SOT requires a mechanism for in-plane symmetry breaking. Existing methods to do so involve the application of an in-plane bias magnetic field, or incorporation of in-plane structural asymmetry in the device, both of which can be difficult to implement in practical applications. Here, we report bias-field-free SOT switching in a single perpendicular CoTb layer with an engineered vertical composition gradient. The vertical structural inversion asymmetry induces strong intrinsic SOTs and a gradient-driven Dzyaloshinskii–Moriya interaction (g-DMI), which breaks the in-plane symmetry during the switching process. Micromagnetic simulations are in agreement with experimental results, and elucidate the role of g-DMI in the deterministic switching processes. This bias-field-free switching scheme for perpendicular ferrimagnets with g-DMI provides a strategy for efficient and compact SOT device design.

  5. Abstract

    Spin Orbit Torque Magnetic RAM (SOT-MRAM) is emerging as a promising memory technology owing to its high endurance, reliability and speed. A critical factor for its success is the development of materials that exhibit efficient conversion of charge current to spin current, characterized by their spin Hall efficiency. In this work, it is experimentally demonstrated that the spin Hall efficiency of the industrially relevant ultra-thin Ta can be enhanced by more than 25× when a monolayer (ML) WSe2is inserted as an underlayer. The enhancement is attributed to spin absorption at the Ta/WSe2interface, suggested by harmonic Hall measurements. The presented hybrid spin Hall stack with a 2D WSe2underlayer has a total body thickness of less than 2 nm and exhibits greatly enhanced spin Hall efficiency, which makes this hybrid a promising candidate for energy efficient SOT-MRAM.