Neural decoding of human locomotion, including automated gait intention detection and continuous decoding of lower limb joint angles, has been of great interest in the field of Brain Machine Interface (BMI). However, neural decoding of gait in developing children has yet to be demonstrated. In this study, we collected physiological data (electroencephalography (EEG), electromyography (EMG)), and kinematic data from children performing different locomotion tasks. We also developed a state space estimation model to decode lower limb joint angles from scalp EEG. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction. The decoding accuracies (Pearson’s r values) were promising (Hip: 0.71; Knee: 0.59; Ankle: 0.51). Our results demonstrate the feasibility of neural decoding of children walking and have implications for the development of a real-time closed-loop BMI system for the control of a pediatric exoskeleton.
more »
« less
Assaying neural activity of children during video game play in public spaces: a deep learning approach
Abstract Objective. Understanding neural activity patterns in the developing brain remains one of the grand challenges in neuroscience. Developing neural networks are likely to be endowed with functionally important variability associated with the environmental context, age, gender, and other variables. Therefore, we conducted experiments with typically developing children in a stimulating museum setting and tested the feasibility of using deep learning techniques to help identify patterns of brain activity associated with different conditions.Approach. A four-channel dry EEG-based Mobile brain-body imaging data of children at rest and during videogame play (VGP) was acquired at the Children’s Museum of Houston. A data-driven approach based on convolutional neural networks (CNN) was used to describe underlying feature representations in the EEG and their ability to discern task and gender. The variability of the spectral features of EEG during the rest condition as a function of age was also analyzed.Main results. Alpha power (7–13 Hz) was higher during rest whereas theta power (4–7 Hz) was higher during VGP. Beta (13–18 Hz) power was the most significant feature, higher in females, when differentiating between males and females. Using data from both temporoparietal channels to classify between VGP and rest condition, leave-one-subject-out cross-validation accuracy of 67% was obtained. Age-related changes in EEG spectral content during rest were consistent with previous developmental studies conducted in laboratory settings showing an inverse relationship between age and EEG power.Significance. These findings are the first to acquire, quantify and explain brain patterns observed during VGP and rest in freely behaving children in a museum setting using a deep learning framework. The study shows how deep learning can be used as a data driven approach to identify patterns in the data and explores the issues and the potential of conducting experiments involving children in a natural and engaging environment.
more »
« less
- Award ID(s):
- 1533691
- PAR ID:
- 10306273
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Journal of Neural Engineering
- Volume:
- 16
- Issue:
- 3
- ISSN:
- 1741-2560
- Page Range / eLocation ID:
- Article No. 036028
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Neural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9–17 years) across 2.25 years. From 10 min of magnetoencephalography resting-state data, normalized source spectral power and intraclass correlation coefficients were calculated. We found sex-specific differences in global normalized power, with males showing age-related decreases in delta and theta, along with age-related increases in beta and gamma. Females had fewer significant age-related changes. Structural magnetic resonance imaging revealed that males had more total gray, subcortical gray, and cortical white matter volume. There were significant age-related changes in total gray matter volume with sex-specific and frequency-specific correlations to normalized power. In males, increased total gray matter volume correlated with increased theta and alpha, along with decreased gamma. Split-half reliability was excellent in all frequency bands and source regions. Test–retest reliability ranged from good (alpha) to fair (theta) to poor (remaining bands). While resting-state neural oscillations can have fingerprint-like quality in adults, we show here that neural oscillations continue to evolve in children and adolescents due to brain maturation and neurodevelopmental change.more » « less
-
Past research has recognized culture and gender variation in the experience of emotion, yet this has not been examined on a level of effective connectivity. To determine culture and gender differences in effec-tive connectivity during emotional experiences, we applied dynamic causal modeling (DCM) to electro-encephalography (EEG) measures of brain activity obtained from Chinese and American participants while they watched emotion-evoking images. Relative to US participants, Chinese participants favored a model bearing a more integrated dorsolateral prefrontal cortex (dlPFC) during fear v. neutral experiences. Meanwhile, relative to males, females favored a model bearing a less integrated dlPFC during fear v. neutral experiences. A culture-gender interaction for winning models was also observed; only US partici-pants showed an effect of gender, with US females favoring a model bearing a less integrated dlPFC compared to the other groups. These findings suggest that emotion and its neural correlates depend in part on the cultural background and gender of an individual. To our knowledge, this is also the first study to apply both DCM and EEG measures in examining culture-gender interaction and emotion.more » « less
-
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation method that modulates brain activity by inducing electric fields in the brain. Real-time, state-dependent stimulation with TMS has shown that neural oscillation phase modulates corticospinal excitability. However, such motor evoked potentials (MEPs) only indirectly reflect motor cortex activation and are unavailable at other brain regions of interest. The direct and secondary cortical effects of phase-dependent brain stimulation remain an open question. In this study, we recorded the cortical responses during single-pulse TMS using electroencephalography (EEG) concurrently with the MEP measurements in 20 healthy human volunteers (11 female). TMS was delivered at peak, rising, trough, and falling phases of mu (8–13 Hz) and beta (14–30 Hz) oscillations in the motor cortex. The cortical responses were quantified through TMS evoked potential components N15, P50, and N100 as peak-to-peak amplitudes (P50-N15 and P50-N100). We further analyzed whether the prestimulus frequency band power was predictive of the cortical responses. We demonstrated that phase-specific targeting modulates cortical responses. The phase relationship between cortical responses was different for early and late responses. In addition, pre-TMS mu oscillatory power and phase significantly predicted both early and late cortical EEG responses in mu-specific targeting, indicating the independent causal effects of phase and power. However, only pre-TMS beta power significantly predicted the early and late TEP components during beta-specific targeting. Further analyses indicated distinct roles of mu and beta power on cortical responses. These findings provide insight to mechanistic understanding of neural oscillation states in cortical and corticospinal activation in humans.more » « less
-
Objectively differentiating patient mental states based on electrical activity, as opposed to overt behavior, is a fundamental neuroscience problem with medical applications, such as identifying patients in locked-in state vs. coma. Electroencephalography (EEG), which detects millisecond-level changes in brain activity across a range of frequencies, allows for assessment of external stimulus processing by the brain in a non-invasive manner. We applied machine learning methods to 26-channel EEG data of 24 fluent Deaf signers watching videos of sign language sentences (comprehension condition), and the same videos reversed in time (non-comprehension condition), to objectively separate vision-based high-level cognition states. While spectrotemporal parameters of the stimuli were identical in comprehension vs. non-comprehension conditions, the neural responses of participants varied based on their ability to linguistically decode visual data. We aimed to determine which subset of parameters (specific scalp regions or frequency ranges) would be necessary and sufficient for high classification accuracy of comprehension state. Optical flow, characterizing distribution of velocities of objects in an image, was calculated for each pixel of stimulus videos using MATLAB Vision toolbox. Coherence between optical flow in the stimulus and EEG neural response (per video, per participant) was then computed using canonical component analysis with NoiseTools toolbox. Peak correlations were extracted for each frequency for each electrode, participant, and video. A set of standard ML algorithms were applied to the entire dataset (26 channels, frequencies from .2 Hz to 12.4 Hz, binned in 1 Hz increments), with consistent out-of-sample 100% accuracy for frequencies in .2-1 Hz range for all regions, and above 80% accuracy for frequencies < 4 Hz. Sparse Optimal Scoring (SOS) was then applied to the EEG data to reduce the dimensionality of the features and improve model interpretability. SOS with elastic-net penalty resulted in out-of-sample classification accuracy of 98.89%. The sparsity pattern in the model indicated that frequencies between 0.2–4 Hz were primarily used in the classification, suggesting that underlying data may be group sparse. Further, SOS with group lasso penalty was applied to regional subsets of electrodes (anterior, posterior, left, right). All trials achieved greater than 97% out-of-sample classification accuracy. The sparsity patterns from the trials using 1 Hz bins over individual regions consistently indicated frequencies between 0.2–1 Hz were primarily used in the classification, with anterior and left regions performing the best with 98.89% and 99.17% classification accuracy, respectively. While the sparsity pattern may not be the unique optimal model for a given trial, the high classification accuracy indicates that these models have accurately identified common neural responses to visual linguistic stimuli. Cortical tracking of spectro-temporal change in the visual signal of sign language appears to rely on lower frequencies proportional to the N400/P600 time-domain evoked response potentials, indicating that visual language comprehension is grounded in predictive processing mechanisms.more » « less
An official website of the United States government
