skip to main content


Title: Nanobase.org: a repository for DNA and RNA nanostructures
Abstract

We introduce a new online database of nucleic acid nanostructures for the field of DNA and RNA nanotechnology. The database implements an upload interface, searching and database browsing. Each deposited nanostructures includes an image of the nanostructure, design file, an optional 3D view, and additional metadata such as experimental data, protocol or literature reference. The database accepts nanostructures in any preferred format used by the uploader for the nanostructure design. We further provide a set of conversion tools that encourage design file conversion into common formats (oxDNA and PDB) that can be used for setting up simulations, interactive editing or 3D visualization. The aim of the repository is to provide to the DNA/RNA nanotechnology community a resource for sharing their designs for further reuse in other systems and also to function as an archive of the designs that have been achieved in the field so far. Nanobase.org is available at https://nanobase.org/.

 
more » « less
NSF-PAR ID:
10306321
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
50
Issue:
D1
ISSN:
0305-1048
Page Range / eLocation ID:
p. D246-D252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Recent advances in nanotechnology have enabled rapid progress in many areas of biomedical research, including drug delivery, targeted therapies, imaging, and sensing. The emerging field of DNA nanotechnology, in which oligonucleotides are designed to self‐assemble into programmable 2D and 3D nanostructures, offers great promise for further advancements in biomedicine. DNA nanostructures present highly addressable and functionally diverse platforms for biological applications due to their ease of construction, controllable architecture and size/shape, and multiple avenues for chemical modification. Both supramolecular and covalent modification with small molecules and polymers have been shown to expand or enhance the functions of DNA nanostructures in biological contexts. These alterations include the addition of small molecule, protein, or nucleic acid moieties that enable structural stability under physiological conditions, more efficient cellular uptake and targeting, delivery of various molecular cargos, stimulus‐responsive behaviors, or modulation of a host immune response. Herein, various types of DNA nanostructure modifications and their functional consequences are examined, followed by a brief discussion of the future opportunities for functionalized DNA nanostructures as well as the barriers that must be overcome before their translational use.

    This article is categorized under:

    Nanotechnology Approaches to Biology > Nanoscale Systems in Biology

    Therapeutic Approaches and Drug Discovery > Emerging Technologies

    Biology‐Inspired Nanomaterials > Nucleic Acid‐Based Structures

     
    more » « less
  2. Abstract This work seeks to remedy two deficiencies in the current nucleic acid nanotechnology software environment: the lack of both a fast and user-friendly visualization tool and a standard for structural analyses of simulated systems. We introduce here oxView, a web browser-based visualizer that can load structures with over 1 million nucleotides, create videos from simulation trajectories, and allow users to perform basic edits to DNA and RNA designs. We additionally introduce open-source software tools for extracting common structural parameters to characterize large DNA/RNA nanostructures simulated using the coarse-grained modeling tool, oxDNA, which has grown in popularity in recent years and is frequently used to prototype new nucleic acid nanostructural designs, model biophysics of DNA/RNA processes, and rationalize experimental results. The newly introduced software tools facilitate the computational characterization of DNA/RNA designs by providing multiple analysis scripts, including mean structures and structure flexibility characterization, hydrogen bond fraying, and interduplex angles. The output of these tools can be loaded into oxView, allowing users to interact with the simulated structure in a 3D graphical environment and modify the structures to achieve the required properties. We demonstrate these newly developed tools by applying them to design and analysis of a range of DNA/RNA nanostructures. 
    more » « less
  3. Abstract

    The ability to create stimuli-responsive DNA nanostructures has played a prominent role in dynamic DNA nanotechnology. Primary among these is the process of toehold-based strand displacement, where a nucleic acid molecule can act as a trigger to cause conformational changes in custom-designed DNA nanostructures. Here, we add another layer of control to strand displacement reactions through a 'toehold clipping' process. By designing DNA complexes with a photocleavable linker-containing toehold or an RNA toehold, we show that we can use light (UV) or enzyme (ribonuclease) to eliminate the toehold, thus preventing strand displacement reactions. We use molecular dynamics simulations to analyze the structural effects of incorporating a photocleavable linker in DNA complexes. Beyond simple DNA duplexes, we also demonstrate the toehold clipping process in a model DNA nanostructure, by designing a toehold containing double-bundle DNA tetrahedron that disassembles when an invading strand is added, but stays intact after the toehold clipping process even in the presence of the invading strand. This work is an example of combining multiple physical or molecular stimuli to provide additional remote control over DNA nanostructure reconfiguration, advances that hold potential use in biosensing, drug delivery or molecular computation.

     
    more » « less
  4. Accessibility of synthetic oligonucleotides and the success of DNA nanotechnology open a possibility to use DNA nanostructures for building sophisticated enzyme-like catalytic centers. Here we used a double DNA crossover (DX) tile nanostructure to enhance the rate, the yield, and the specificity of 5′−5′ ligation of two oligonucleotides with arbitrary sequences. The ligation product was isolated via a simple procedure. The same strategy was applied for the synthesis of 3′−3′ linked oligonucleotides, thus introducing a synthetic route to DNA and RNA with a switched orientation that is affordable by a low- resource laboratory. To emphasize the utility of the ligation products, we synthesized a circular structure formed from intramolecular complementarity that we named “an impossible DNA wheel” since it cannot be built from regular DNA strands by enzymatic reactions. Therefore, DX-tile nanostructures can open a route to producing useful chemical products that are unattainable via enzymatic synthesis. This is the first example of the use of DNA nanostructures as a catalyst. This study advocates for further exploration of DNA nanotechnology for building enzyme-like reactive systems. 
    more » « less
  5. The domains of DNA and RNA nanotechnology are steadily gaining in popularity while proving their value with various successful results, including biosensing robots and drug delivery cages. Nowadays, the nanotechnology design pipeline usually relies on computer-based design (CAD) approaches to design and simulate the desired structure before the wet lab assembly. To aid with these tasks, various software tools exist and are often used in conjunction. However, their interoperability is hindered by a lack of a common file format that is fully descriptive of the many design paradigms. Therefore, in this paper, we propose a Unified Nanotechnology Format (UNF) designed specifically for the biomimetic nanotechnology field. UNF allows storage of both design and simulation data in a single file, including free-form and lattice-based DNA structures. By defining a logical and versatile format, we hope it will become a widely accepted and used file format for the nucleic acid nanotechnology community, facilitating the future work of researchers and software developers. Together with the format description and publicly available documentation, we provide a set of converters from existing file formats to simplify the transition. Finally, we present several use cases visualizing example structures stored in UNF, showcasing the various types of data UNF can handle. 
    more » « less