skip to main content


Title: Analyzing the performance of variational quantum factoring on a superconducting quantum processor
Abstract

In the near-term, hybrid quantum-classical algorithms hold great potential for outperforming classical approaches. Understanding how these two computing paradigms work in tandem is critical for identifying areas where such hybrid algorithms could provide a quantum advantage. In this work, we study a QAOA-based quantum optimization approach by implementing the Variational Quantum Factoring (VQF) algorithm. We execute experimental demonstrations using a superconducting quantum processor, and investigate the trade off between quantum resources (number of qubits and circuit depth) and the probability that a given biprime is successfully factored. In our experiments, the integers 1099551473989, 3127, and 6557 are factored with 3, 4, and 5 qubits, respectively, using a QAOA ansatz with up to 8 layers and we are able to identify the optimal number of circuit layers for a given instance to maximize success probability. Furthermore, we demonstrate the impact of different noise sources on the performance of QAOA, and reveal the coherent error caused by the residualZZ-coupling between qubits as a dominant source of error in a near-term superconducting quantum processor.

 
more » « less
NSF-PAR ID:
10306527
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
7
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Realizing the potential of near-term quantum computers to solve industry-relevant constrained-optimization problems is a promising path to quantum advantage. In this work, we consider the extractive summarization constrained-optimization problem and demonstrate the largest-to-date execution of a quantum optimization algorithm that natively preserves constraints on quantum hardware. We report results with the Quantum Alternating Operator Ansatz algorithm with a Hamming-weight-preserving XY mixer (XY-QAOA) on trapped-ion quantum computer. We successfully execute XY-QAOA circuits that restrict the quantum evolution to the in-constraint subspace, using up to 20 qubits and a two-qubit gate depth of up to 159. We demonstrate the necessity of directly encoding the constraints into the quantum circuit by showing the trade-off between the in-constraint probability and the quality of the solution that is implicit if unconstrained quantum optimization methods are used. We show that this trade-off makes choosing good parameters difficult in general. We compare XY-QAOA to the Layer Variational Quantum Eigensolver algorithm, which has a highly expressive constant-depth circuit, and the Quantum Approximate Optimization Algorithm. We discuss the respective trade-offs of the algorithms and implications for their execution on near-term quantum hardware.

     
    more » « less
  2. null (Ed.)
    Quantum computational supremacy arguments, which describe a way for a quantum computer to perform a task that cannot also be done by a classical computer, typically require some sort of computational assumption related to the limitations of classical computation. One common assumption is that the polynomial hierarchy ( P H ) does not collapse, a stronger version of the statement that P ≠ N P , which leads to the conclusion that any classical simulation of certain families of quantum circuits requires time scaling worse than any polynomial in the size of the circuits. However, the asymptotic nature of this conclusion prevents us from calculating exactly how many qubits these quantum circuits must have for their classical simulation to be intractable on modern classical supercomputers. We refine these quantum computational supremacy arguments and perform such a calculation by imposing fine-grained versions of the non-collapse conjecture. Our first two conjectures poly3-NSETH( a ) and per-int-NSETH( b ) take specific classical counting problems related to the number of zeros of a degree-3 polynomial in n variables over F 2 or the permanent of an n × n integer-valued matrix, and assert that any non-deterministic algorithm that solves them requires 2 c n time steps, where c ∈ { a , b } . A third conjecture poly3-ave-SBSETH( a ′ ) asserts a similar statement about average-case algorithms living in the exponential-time version of the complexity class S B P . We analyze evidence for these conjectures and argue that they are plausible when a = 1 / 2 , b = 0.999 and a ′ = 1 / 2 .Imposing poly3-NSETH(1/2) and per-int-NSETH(0.999), and assuming that the runtime of a hypothetical quantum circuit simulation algorithm would scale linearly with the number of gates/constraints/optical elements, we conclude that Instantaneous Quantum Polynomial-Time (IQP) circuits with 208 qubits and 500 gates, Quantum Approximate Optimization Algorithm (QAOA) circuits with 420 qubits and 500 constraints and boson sampling circuits (i.e. linear optical networks) with 98 photons and 500 optical elements are large enough for the task of producing samples from their output distributions up to constant multiplicative error to be intractable on current technology. Imposing poly3-ave-SBSETH(1/2), we additionally rule out simulations with constant additive error for IQP and QAOA circuits of the same size. Without the assumption of linearly increasing simulation time, we can make analogous statements for circuits with slightly fewer qubits but requiring 10 4 to 10 7 gates. 
    more » « less
  3. Most near-term quantum information processing devices will not be capable of implementing quantum error correction and the associated logical quantum gate set. Instead, quantum circuits will be implemented directly using the physical native gate set of the device. These native gates often have a parameterization (e.g., rotation angles) which provide the ability to perform a continuous range of operations. Verification of the correct operation of these gates across the allowable range of parameters is important for gaining confidence in the reliability of these devices. In this work, we demonstrate a procedure for sample-efficient verification of continuously-parameterized quantum gates for small quantum processors of up to approximately 10 qubits. This procedure involves generating random sequences of randomly-parameterized layers of gates chosen from the native gate set of the device, and then stochastically compiling an approximate inverse to this sequence such that executing the full sequence on the device should leave the system near its initial state. We show that fidelity estimates made via this technique have a lower variance than fidelity estimates made via cross-entropy benchmarking. This provides an experimentally-relevant advantage in sample efficiency when estimating the fidelity loss to some desired precision. We describe the experimental realization of this technique using continuously-parameterized quantum gate sets on a trapped-ion quantum processor from Sandia QSCOUT and a superconducting quantum processor from IBM Q, and we demonstrate the sample efficiency advantage of this technique both numerically and experimentally. 
    more » « less
  4. The quantum approximate optimization algorithm (QAOA) is a near-term hybrid algorithm intended to solve combinatorial optimization problems, such as MaxCut. QAOA can be made to mimic an adiabatic schedule, and in the p → ∞ limit the final state is an exact maximal eigenstate in accordance with the adiabatic theorem. In this work, the connection between QAOA and adiabaticity is made explicit by inspecting the regime of p large but finite. By connecting QAOA to counterdiabatic (CD) evolution, we construct CD-QAOA angles which mimic a counterdiabatic schedule by matching Trotter "error" terms to approximate adiabatic gauge potentials which suppress diabatic excitations arising from finite ramp speed. In our construction, these "error" terms are helpful, not detrimental, to QAOA. Using this matching to link QAOA with quantum adiabatic algorithms (QAA), we show that the approximation ratio converges to one at least as 1 − C ( p ) ∼ 1 / p μ . We show that transfer of parameters between graphs, and interpolating angles for p + 1 given p are both natural byproducts of CD-QAOA matching. Optimization of CD-QAOA angles is equivalent to optimizing a continuous adiabatic schedule. Finally, we show that, using a property of variational adiabatic gauge potentials, QAOA is at least counterdiabatic, not just adiabatic, and has better performance than finite time adiabatic evolution. We demonstrate the method on three examples: a 2 level system, an Ising chain, and the MaxCut problem. 
    more » « less
  5. Quantum computing is gaining momentum in revolutionizing the way we approach complex problem-solving. However, the practical implementation of quantum algorithms remains a significant challenge due to the error-prone and hardware limits of near-term quantum devices. For instance, physical qubit connections are limited, which necessitates the use of quantum SWAP gates to dynamically transform the logical topology during execution. In addition, to optimize fidelity, it is essential to ensure that 1) the allocated hardware has a low error rate and 2) the number of SWAP gates injected into the circuit is minimized. To address these challenges, we propose a suite of algorithms: the Fidelity-aware Graph Extraction Algorithm (FGEA) is used to identify the hardware region with the lowest probability of error, the Frequency-based Mapping Algorithm (FMA) allocates logical-physical qubits that reduce the potential distance of topological transformation, and the Heuristic Routing Algorithm (HRA) searches for an optimal swapping injection strategy. We evaluate the proposed algorithms on the IBM-provided Noisy Intermediate-Scale Quantum (NISQ) computer, using a dataset consisting of 17 different quantum circuits of various sizes. The circuits are executed on the IBM Toronto Falcon processor. The three proposed algorithms outperform the existing SABRE algorithm in reducing the number of SWAP gates required. Therefore, our proposed algorithms hold significant promise in enhancing the fidelity and reducing the number of SWAP gates required in implementing Quantum algorithms. 
    more » « less