skip to main content


Title: Friction modulation in limbless, three-dimensional gaits and heterogeneous terrains
Abstract

Motivated by a possible convergence of terrestrial limbless locomotion strategies ultimately determined by interfacial effects, we show how both 3D gait alterations and locomotory adaptations to heterogeneous terrains can be understood through the lens of local friction modulation. Via an effective-friction modeling approach, compounded by 3D simulations, the emergence and disappearance of a range of locomotory behaviors observed in nature is systematically explained in relation to inhabited environments. Our approach also simplifies the treatment of terrain heterogeneity, whereby even solid obstacles may be seen as high friction regions, which we confirm against experiments of snakes ‘diffracting’ while traversing rows of posts, similar to optical waves. We further this optic analogy by illustrating snake refraction, reflection and lens focusing. We use these insights to engineer surface friction patterns and demonstrate passive snake navigation in complex topographies. Overall, our study outlines a unified view that connects active and passive 3D mechanics with heterogeneous interfacial effects to explain a broad set of biological observations, and potentially inspire engineering design.

 
more » « less
Award ID(s):
1846752 1830881
NSF-PAR ID:
10306745
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present an efficient numerical method for earthquake sequences in 2D antiplane shear that incorporates wave propagation. A vertical strike‐slip fault governed by rate‐and‐state friction is embedded in a heterogeneous elastic half‐space discretized using a high‐order accurate Summation‐by‐Parts finite difference method. Adaptive time‐stepping is applied during the interseismic periods; during coseismic rupture we apply a non‐stiff method, enabling a variety of explicit time stepping methods. We consider a shallow sedimentary basin and explore sensitivity to spatial resolution and the switching criteria used to transition between solvers. For sufficient grid resolution and switching thresholds, simulations results remain robust over long time scales. We explore the effects of full dynamics and basin depth and stiffness, making comparisons with quasi‐dynamic counterparts. Fully‐dynamic ruptures generate higher stresses, faster slip rates and rupture speeds, producing seismic scattering in the bulk. Because single‐event dynamic simulations penetrate further into sediments compared to the quasi‐dynamic simulations, we hypothesize that the incorporation of inertial effects would produce sequences of only surface‐rupturing events. However, we find that subbasin ruptures can still emerge with elastodynamics, for sufficiently compliant basins. We also find that full dynamics can increase the frequency of surface‐rupturing events, depending on basin depth and stiffness. These results suggest that an earthquake's potential to penetrate into shallow sediments should be viewed through the lens of the earthquake sequence, as it depends on basin properties and wave‐mediated effects, but also on self‐consistent initial conditions obtained from seismogenic cycling.

     
    more » « less
  2. Limbless animals like snakes inhabit most terrestrial environments, generating thrust to overcome drag on the elongate body via contacts with heterogeneities. The complex body postures of some snakes and the unknown physics of most terrestrial materials frustrates understanding of strategies for effective locomotion. As a result, little is known about how limbless animals contend with unplanned obstacle contacts. We studied a desert snake,Chionactis occipitalis, which uses a stereotyped head-to-tail traveling wave to move quickly on homogeneous sand. In laboratory experiments, we challenged snakes to move across a uniform substrate and through a regular array of force-sensitive posts. The snakes were reoriented by the array in a manner reminiscent of the matter-wave diffraction of subatomic particles. Force patterns indicated the animals did not change their self-deformation pattern to avoid or grab the posts. A model using open-loop control incorporating previously described snake muscle activation patterns and body-buckling dynamics reproduced the observed patterns, suggesting a similar control strategy may be used by the animals. Our results reveal how passive dynamics can benefit limbless locomotors by allowing robust transit in heterogeneous environments with minimal sensing.

     
    more » « less
  3. Abstract

    There is an increasing interest in hierarchical design and additive manufacturing (AM) of cement‐based materials. However, the brittle behavior of these materials and the presence of interfaces from the AM process currently present a major challenge. Contrary to the commonly adopted approach in AM of cement‐based materials to eliminate the interfaces in 3D‐printed hardened cement paste (hcp) elements, this work focuses on harnessing the heterogeneous interfaces by employing novel architectures (based on bioinspired Bouligand structures). These architectures are found to generate unique damage mechanisms, which allow inherently brittle hcp materials to attain flaw‐tolerant properties and novel performance characteristics. It is hypothesized that combining heterogeneous interfaces with carefully designed architectures promotes such damage mechanisms as, among others, interfacial microcracking and crack twisting. This, in turn, leads to damage delocalization in brittle 3D‐printed architectured hcp and therefore results in quasi‐brittle behavior, enhanced fracture and damage tolerance, and unique load‐displacement response, all without sacrificing strength. It is further found that in addition to delocalization of the cracks, the Bouligand architectures can also enhance work of failure and inelastic deflection of the architectured hcp elements by over 50% when compared to traditionally cast elements from the same materials.

     
    more » « less
  4. The locomotion of soft snake robots is dependent on frictional interactions with the environment. Frictional anisotropy is a morphological characteristic of snakeskin that allows snakes to engage selectively with surfaces and generate propulsive forces. The prototypical slithering gait of most snakes is lateral undulation, which requires a significant lateral resistance that is lacking in artificial skins of existing soft snake robots. We designed a set of kirigami lattices with curvilinearly-arranged cuts to take advantage of in-plane rotations of the 3D structures when wrapped around a soft bending actuator. By changing the initial orientation of the scales, the kirigami skin produces high lateral friction upon engagement with surface asperities, with lateral to cranial anisotropic friction ratios above 4. The proposed design increased the overall velocity of the soft snake robot more than fivefold compared to robots without skin. 
    more » « less
  5. Synopsis

    Across countless marine invertebrates, coordination of closely spaced swimming appendages is key to producing diverse locomotory behaviors. Using a widespread mechanism termed hybrid metachronal propulsion, mantis shrimp swim by moving five paddle-like pleopods along their abdomen in a posterior to anterior sequence during the power stroke and a near-synchronous motion during the recovery stroke. Despite the ubiquity of this mechanism, it is not clear how hybrid metachronal swimmers coordinate and modify individual appendage movements to achieve a range of swimming capabilities. Using high-speed imaging, we measured pleopod kinematics of mantis shrimp (Neogonodactylus bredini), while they performed two swimming behaviors: burst swimming and taking off from the substrate. By tracking each of the five pleopods, we tested how stroke kinematics vary across swimming speeds and the two swimming behaviors. We found that mantis shrimp achieve faster swimming speeds through a combination of higher beat frequencies, smaller stroke durations, and partially via larger stroke angles. The five pleopods exhibit non-uniform kinematics that contribute to the coordination and forward propulsion of the whole system. Micro-hook structures (retinacula) connect each of the five pleopod pairs and differ in their attachment across pleopods—possibly contributing to passive kinematic control. We compare our findings in N. bredini to previous studies to identify commonalities across hybrid metachronal swimmers at high Reynolds numbers and centimeter scales. Through our large experimental dataset and by tracking each pleopod's movements, our study reveals key parameters by which mantis shrimp adjust and control their swimming, yielding diverse locomotor abilities.

     
    more » « less