skip to main content


Title: Predicting kinetics of water-rich permeate flux through photocatalytic mesh under visible light illumination
Abstract

Membrane-based separation technologies are attractive to remediating unconventional water sources, including brackish, industrial, and municipal wastewater, due to their versatility and relatively high energy efficiency. However, membrane fouling by dissolved or suspended organic substances remains a primary challenge which can result in an irreversible decline of the permeate flux. To overcome this, membranes have been incorporated with photocatalytic materials that can degrade these organic substances deposited on the surface upon light illumination. While such photocatalytic membranes have demonstrated that they can recover their inherent permeability, less information is known about the effect of photocatalysis on the kinetics of the permeate flux. In this work, a photocatalytic mesh that can selectively permeate water while repelling oil was fabricated by coating a mixture of nitrogen-doped TiO2(N-TiO2) and perfluorosilane-grafted SiO2(F-SiO2) nanoparticles on a stainless steel mesh. Utilizing the photocatalytic mesh, the time-dependent evolution of the water-rich permeate flux as a result of photocatalytic degradation of the oil was studied under the visible light illumination. A mathematical model was developed that can relate the photocatalytic degradation of the organic substances deposited on a mesh surface to the evolution of the permeate flux. This model was established by integrating the Langmuir–Hinshelwood kinetics for photocatalysis and the Cassie–Baxter wettability analysis on a chemically heterogeneous mesh surface into a permeate flux relation. Consequently, the time-dependent water-rich permeate flux values are compared with those predicted by using the model. It is found that the model can predict the evolution of the water-rich permeate flux with a goodness of fit of 0.92.

 
more » « less
Award ID(s):
1944314
NSF-PAR ID:
10306812
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Membrane‐based technologies are attractive for remediating oily wastewater because they are relatively energy‐efficient and are applicable to a wide range of industrial effluents. For complete treatment of oily wastewater, removing dissolved contaminants from the water phase is typically followed by adsorption onto an adsorbent, which complicates the process. Here, an in‐air superhydrophilic and underwater superoleophobic membrane‐based continuous separation of surfactant‐stabilized oil‐in‐water emulsions and in situ decontamination of water by visible‐light‐driven photocatalytic degradation of dissolved organic contaminants is reported. The membrane is fabricated by utilizing a thermally sensitized stainless steel mesh coated with visible light absorbing iron‐doped titania nanoparticles. Post annealing of the membrane can enhance the adhesion of nanoparticles to the membrane surface by formation of a bridge between them. An apparatus that enables continuous separation of surfactant‐stabilized oil‐in‐water emulsion and in situ photocatalytic degradation of dissolved organic matter in the water‐rich permeate upon irradiation of visible light on the membrane surface with greater than 99% photocatalytic degradation is developed. The membrane demonstrates the recovery of its intrinsic water‐rich permeate flux upon continuous irradiation of light after being contaminated with oil. Finally, continuous oil−water separation and in situ water decontamination is demonstrated by photocatalytically degrading model toxins in water‐rich permeate.

     
    more » « less
  2. Abstract

    Nanoparticle (NP) additions can substantially improve the performance of reverse osmosis and nanofiltration polyamide (PA) membranes. However, the relative impacts of leading additives are poorly understood. In this study, we compare the effects ofTiO2andSiO2NPs as nanofillers in PA membranes with respect to permeate flux and the rejection of organic matter (OM) and salts. Thin‐film nanocomposite (TFN) PA membranes were fabricated using similarly sizedTiO215 nm andSiO2(10 – 20 nm)NPs, introduced at four different NP concentrations (0.01, 0.05, 0.2, and 0.5% w/v). Compared with PA membranes fabricated without NPs, membranes fabricated with nanofillers improved membranes hydrophilicity, membrane porosity, and consequently the permeability. Permeability was increased by 24 and 58% with the addition ofTiO2andSiO2, respectively. Rejection performance and fouling behavior of the membranes were examined with salt (MgSO4andNaCl) and OM (humic acid [HA] and tannic acid [TA]). The addition ofTiO2andSiO2nanofillers to the PA membranes improved the permeability of these membranes and also increased the rejection ofMgSO4, especially for TiO2membranes. The addition ofTiO2andSiO2to the membranes exhibited a higher flux and lower flux decline ratio than the control membrane in OM solution filtration. TFN membranes' HA and TA rejections were at least 77 and 71%, respectively. The surface change properties of NPs appear to play a dominant role in determining their effects as nanofillers in the composite membrane matrix through a balance of changes produced in membrane pore size and membrane hydrophilicity.

     
    more » « less
  3. Membrane-based separation technologies are the cornerstone of remediating unconventional water sources, including brackish and industrial or municipal wastewater, as they are relatively energy-efficient and versatile. However, membrane fouling by dissolved and suspended substances in the feed stream remains a primary challenge that currently prevents these membranes from being used in real practices. Thus, we directly address this challenge by applying a superhydrophilic and oleophobic coating to a commercial membrane surface which can be utilized to separate and desalinate an oil and saline water mixture, in addition to photocatalytically degrading the organic substances. We fabricated the photocatalytic membrane by coating a commercial membrane with an ultraviolet (UV) light-curable adhesive. Then, we sprayed it with a mixture of photocatalytic nitrogen-doped titania (N-TiO2) and perfluoro silane-grafted silica (F-SiO2) nanoparticles. The membrane was placed under a UV light, which resulted in a chemically heterogeneous surface with intercalating high and low surface energy regions (i.e., N-TiO2 and F-SiO2, respectively) that were securely bound to the commercial membrane surface. We demonstrated that the coated membrane could be utilized for continuous separation and desalination of an oil–saline water mixture and for simultaneous photocatalytic degradation of the organic substances adsorbed on the membrane surface upon visible light irradiation. 
    more » « less
  4. Abstract

    Local laser‐induced oxidation is an extremely valuable technique to perform high‐throughput optimization across multidimensional parameter sets. In this work, a versatile method is presented for the synthesis of titanium dioxide (TiO2) thin‐films with varying crystalline structures through the use of localized, visible, continuous‐wave laser‐processing. By controlling the laser intensity and the exposure time, the conversion of amorphous titanium disulfide (a‐TiS2) precursor films into distinct phases of TiO2is achieved and a laser‐induced oxidation phase diagram is constructed with the resulting material phases, including anatase, rutile, and black TiO2. By utilizing the dependence of phase formation on the rate and duration of laser energy input, mixtures of anatase and rutile phases are fabricated with controlled spatial arrangements. Photocatalytic properties of the synthesized films are evaluated using the degradation of nitrogen oxide (NOx) gas under UV illumination and an organic dye under white‐light illumination, revealing that mixtures of anatase and rutile phases demonstrate superior photocatalytic activity. The laser‐induced oxidation method highlighted showcases a strategy for precisely tailored phase composition for directly tunable properties, paving the way for in‐depth studies into structure‐property relationships in photocatalysis and other applications of metal oxide films.

     
    more » « less
  5. null (Ed.)
    Simultaneous fouling and pore wetting of the membrane during membrane distillation (MD) is a major concern. In this work, an electrospun bilayer membrane for enhancing fouling and wetting resistance has been developed for treating hydraulic fracture-produced water (PW) by MD. These PWs can contain over 200,000 ppm total dissolved solids, organic compounds and surfactants. The membrane consists of an omniphobic surface that faces the permeate stream and a hydrophilic surface that faces the feed stream. The omniphobic surface was decorated by growing nanoparticles, followed by silanization to lower the surface energy. An epoxied zwitterionic polymer was grafted onto the membrane surface that faces the feed stream to form a tight antifouling hydration layer. The membrane was challenged with an aqueous NaCl solution containing sodium dodecyl sulfate (SDS), an ampholyte and crude oil. In the presence of SDS and crude oil, the membrane was stable and displayed salt rejection (>99.9%). Further, the decrease was much less than the base polyvinylidene difluoride (PVDF) electrospun membrane. The membranes were also challenged with actual PW. Our results highlight the importance of tuning the properties of the membrane surface that faces the feed and permeate streams in order to maximize membrane stability, flux and salt rejection. 
    more » « less