skip to main content

Title: Quantifying effects of snow depth on caribou winter range selection and movement in Arctic Alaska
Abstract Background

Caribou and reindeer across the Arctic spend more than two thirds of their lives moving in snow. Yet snow-specific mechanisms driving their winter ecology and potentially influencing herd health and movement patterns are not well known. Integrative research coupling snow and wildlife sciences using observations, models, and wildlife tracking technologies can help fill this knowledge void.


Here, we quantified the effects of snow depth on caribou winter range selection and movement. We used location data of Central Arctic Herd (CAH) caribou in Arctic Alaska collected from 2014 to 2020 and spatially distributed and temporally evolving snow depth data produced by SnowModel. These landscape-scale (90 m), daily snow depth data reproduced the observed spatial snow-depth variability across typical areal extents occupied by a wintering caribou during a 24-h period.


We found that fall snow depths encountered by the herd north of the Brooks Range exerted a strong influence on selection of two distinct winter range locations. In winters with relatively shallow fall snow depth (2016/17, 2018/19, and 2019/20), the majority of the CAH wintered on the tundra north of the Brooks Range mountains. In contrast, during the winters with relatively deep fall snow depth (2014/15, 2015/16, and 2017/18), the majority of more » the CAH caribou wintered in the mountainous boreal forest south of the Brooks Range. Long-term (19 winters; 2001–2020) monitoring of CAH caribou winter distributions confirmed this relationship. Additionally, snow depth affected movement and selection differently within these two habitats: in the mountainous boreal forest, caribou avoided areas with deeper snow, but when on the tundra, snow depth did not trigger significant deep-snow avoidance. In both wintering habitats, CAH caribou selected areas with higher lichen abundance, and they moved significantly slower when encountering deeper snow.


In general, our findings indicate that regional-scale selection of winter range is influenced by snow depth at or prior to fall migration. During winter, daily decision-making within the winter range is driven largely by snow depth. This integrative approach of coupling snow and wildlife observations with snow-evolution and caribou-movement modeling to quantify the multi-facetted effects of snow on wildlife ecology is applicable to caribou and reindeer herds throughout the Arctic.

« less
; ; ; ; ; ; ;
Publication Date:
Journal Name:
Movement Ecology
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Widespread changes in the distribution and abundance of plant functional types (PFTs) are occurring in Arctic and boreal ecosystems due to the intensification of disturbances, such as fire, and climate-driven vegetation dynamics, such as tundra shrub expansion. To understand how these changes affect boreal and tundra ecosystems, we need to first quantify change for multiple PFTs across recent years. While landscape patches are generally composed of a mixture of PFTs, most previous moderate resolution (30 m) remote sensing analyses have mapped vegetation distribution and change within land cover categories that are based on the dominant PFT; or else the continuous distribution of one or a few PFTs, but for a single point in time. Here we map a 35 year time-series (1985–2020) of top cover (TC) for seven PFTs across a 1.77 × 10 6 km 2 study area in northern and central Alaska and northwestern Canada. We improve on previous methods of detecting vegetation change by modeling TC, a continuous measure of plant abundance. The PFTs collectively include all vascular plants within the study area as well as light macrolichens, a nonvascular class of high importance to caribou management. We identified net increases in deciduous shrubs (66 ×more »10 3 km 2 ), evergreen shrubs (20 × 10 3 km 2 ), broadleaf trees (17 × 10 3 km 2 ), and conifer trees (16 × 10 3 km 2 ), and net decreases in graminoids (−40 × 10 3 km 2 ) and light macrolichens (−13 × 10 3 km 2 ) over the full map area, with similar patterns across Arctic, oroarctic, and boreal bioclimatic zones. Model performance was assessed using spatially blocked, nested five-fold cross-validation with overall root mean square errors ranging from 8.3% to 19.0%. Most net change occurred as succession or plant expansion within areas undisturbed by recent fire, though PFT TC change also clearly resulted from fire disturbance. These maps have important applications for assessment of surface energy budgets, permafrost changes, nutrient cycling, and wildlife management and movement analysis.« less
  2. Abstract
    Arctic landscapes are in a state of transition due to changes in climate occurring during both the summer and winter seasons. Scattered observations indicate that beavers (Castor canadensis) have moved from the forest into tundra areas during the last 20 years, likely in response to broader physical and ecosystem changes occurring in Arctic and Boreal regions. The implications of beaver inhabitation in the Arctic and Boreal are unique relative to other ecosystems due to the presence of permafrost and its vulnerability associated with beaver dams and inundation. Our study specifically examines the role of beavers in controlling surface water dynamics and related thermokarst development in low Arctic tundra regions. We mapped the number of beaver dams visible in sub-meter resolution satellite images acquired between 2002 and 2019 for a 100 square kilometer study area (12 years of imagery) near Kotzebue, Alaska and a 430 square kilometer study area (3 years of imagery) encompassing the entire northern Baldwin Peninsula, Alaska. We show that during the last two decades beaver-driven ecosystem engineering is responsible for the majority of surface water area changes and inferred thermokarst development in the study area. This has implications for interpreting surface water area changes and thermokarstMore>>
  3. Abstract Background Migrations in temperate systems typically have two migratory phases, spring and autumn, and many migratory ungulates track the pulse of spring vegetation growth during a synchronized spring migration. In contrast, autumn migrations are generally less synchronous and the cues driving them remain understudied. Our goal was to identify the cues that migrants use in deciding when to initiate migration and how this is updated while en route . Methods We analyzed autumn migrations of Arctic barren-ground caribou ( Rangifer tarandus ) as a series of persistent and directional movements and assessed the influence of a suite of environmental factors. We fitted a dynamic-parameter movement model at the individual-level and estimated annual population-level parameters for weather covariates on 389 individual-seasons across 9 years. Results Our results revealed strong, consistent effects of decreasing temperature and increasing snow depth on migratory movements, indicating that caribou continuously update their migratory decision based on dynamic environmental conditions. This suggests that individuals pace migration along gradients of these environmental variables. Whereas temperature and snow appeared to be the most consistent cues for migration, we also found interannual variability in the effect of wind, NDVI, and barometric pressure. The dispersed distribution of individuals in autumn resultedmore »in diverse environmental conditions experienced by individual caribou and thus pronounced variability in migratory patterns. Conclusions By analyzing autumn migration as a continuous process across the entire migration period, we found that caribou migration was largely related to temperature and snow conditions experienced throughout the journey. This mechanism of pacing autumn migration based on indicators of the approaching winter is analogous to the more widely researched mechanism of spring migration, when many migrants pace migration with a resource wave. Such a similarity in mechanisms highlights the different environmental stimuli to which migrants have adapted their movements throughout their annual cycle. These insights have implications for how long-distance migratory patterns may change as the Arctic climate continues to warm.« less
  4. Abstract Background

    Environmental conditions can influence animal movements, determining when and how much animals move. Yet few studies have quantified how abiotic environmental factors (e.g., ambient temperature, snow depth, precipitation) may affect the activity patterns and metabolic demands of wide-ranging large predators. We demonstrate the utility of accelerometers in combination with more traditional GPS telemetry to measure energy expenditure, ranging patterns, and movement ecology of 5 gray wolves (Canis lupus), a wide-ranging social carnivore, from spring through autumn 2015 in interior Alaska, USA.


    Wolves exhibited substantial variability in home range size (range 500–8300 km2) that was not correlated with daily energy expenditure. Mean daily energy expenditure and travel distance were 22 MJ and 18 km day−1, respectively. Wolves spent 20% and 17% more energy during the summer pup rearing and autumn recruitment seasons than the spring breeding season, respectively, regardless of pack reproductive status. Wolves were predominantly crepuscular but during the night spent 2.4 × more time engaged in high energy activities (such as running) during the pup rearing season than the breeding season.


    Integrating accelerometry with GPS telemetry can reveal detailed insights into the activity and energetics of wide-ranging predators. Heavy precipitation, deep snow, and high ambient temperatures each reduced wolf mobility, suggesting that abiotic conditionsmore »can impact wolf movement decisions. Identifying such patterns is an important step toward evaluating the influence of environmental factors on the space use and energy allocation in carnivores with ecosystem-wide cascading effects, particularly under changing climatic conditions.

    « less
  5. Abstract

    We report a biophysical mechanism, termed cryocampsis (Greek cryo-, cold, + campsis, bending), that helps northern shrubs bend downward under a snow load. Subfreezing temperatures substantially increase the downward bending of cantilever-loaded branches of these shrubs, while allowing them to recover their summer elevation after thawing and becoming unloaded. This is counterintuitive, because biological materials (including branches that show cryocampsis) generally become stiffer when frozen, so should flex less, rather than more, under a given bending load. Cryocampsis involves straining of the cell walls of a branch’s xylem (wood), and depends upon the branch being hydrated. Among woody species tested, cryocampsis occurs in almost all Arctic, some boreal, only a few temperate and Mediterranean, and no tropical woody species that we have tested. It helps cold-winter climate shrubs reversibly get, and stay, below the snow surface, sheltering them from winter weather and predation hazards. This should be advantageous, because Arctic shrub bud winter mortality significantly increases if their shoots are forcibly kept above the snow surface. Our observations reveal a physically surprising behavior of biological materials at subfreezing temperatures, and a previously unrecognized mechanism of woody plant adaptation to cold-winter climates. We suggest that cryocampsis’ mechanism involves the movementmore »of water between cell wall matrix polymers and cell lumens during freezing, analogous to that of frost-heave in soils or rocks.

    « less