skip to main content


Title: Beam power scale-up in micro-electromechanical systems based multi-beam ion accelerators
NSF-PAR ID:
10306932
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
92
Issue:
10
ISSN:
0034-6748
Page Range / eLocation ID:
Article No. 103301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a novel machine learning-based approach to generate fast-executing virtual radiofrequency quadrupole (RFQ) particle accelerators using surrogate modelling. These could potentially be used as on-line feedback tools during beam commissioning and operation, and to optimize the RFQ beam dynamics design prior to construction. Since surrogate models execute orders of magnitude faster than corresponding physics beam dynamics simulations using standard tools like PARMTEQM and RFQGen, the computational complexity of the multi-objective optimization problem reduces significantly. Ultimately, this presents a computationally inexpensive and time efficient method to perform sensitivity studies and an optimization of the crucial RFQ beam output parameters like transmission and emittances. Two different methods of surrogate model creation (polynomial chaos expansion and neural networks) are discussed and the achieved model accuracy is evaluated for different study cases with gradually increasing complexity, ranging from a simple FODO cell example to the full RFQ optimization. We find that variations of the beam input Twiss parameters can be reproduced well. The prediction of the beam with respect to hardware changes, e.g., the electrode modulation, are challenging on the other hand. We discuss possible reasons for that and elucidate nevertheless existing benefits of the applied method to RFQ beam dynamics design. 
    more » « less