skip to main content

Title: Chimerapedia: coherence–incoherence patterns in one, two and three dimensions

Chimera states, or coherence–incoherence patterns in systems of symmetrically coupled identical oscillators, have been the subject of intensive study for the last two decades. In particular it is now known that the continuum limit of phase-coupled oscillators allows an elegant mathematical description of these states based on a nonlinear integro-differential equation known as the Ott–Antonsen equation. However, a systematic study of this equation usually requires a substantial computational effort. In this paper, we consider a special class of nonlocally coupled phase oscillator models where the above analytical approach simplifies significantly, leading to a semi-analytical description of both chimera states and of their linear stability properties. We apply this approach to phase oscillators on a one-dimensional lattice, on a two-dimensional square lattice and on a three-dimensional cubic lattice, all three with periodic boundary conditions. For each of these systems we identify multiple symmetric coherence–incoherence patterns and compute their linear stability properties. In addition, we describe how chimera states in higher-dimensional models are inherited from lower-dimensional models and explain how they can be grouped according to their symmetry properties and global order parameter.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Page Range / eLocation ID:
Article No. 093034
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Systems of coupled nonlinear oscillators often exhibit states of partial synchrony in which some of the oscillators oscillate coherently while the rest remain incoherent. If such a state emerges spontaneously, in other words, if it cannot be associated with any heterogeneity in the system, it is generally referred to as a chimera state. In planar oscillator arrays, these chimera states can take the form of rotating spiral waves surrounding an incoherent core, resembling those observed in oscillatory or excitable media, and may display complex dynamical behavior. To understand this behavior we study stationary and moving chimera states in planar phase oscillator arrays using a combination of direct numerical simulations and numerical continuation of solutions of the corresponding continuum limit, focusing on the existence and properties of traveling spiral wave chimeras as a function of the system parameters. The oscillators are coupled nonlocally and their frequencies are drawn from a Lorentzian distribution. Two cases are discussed in detail, that of a top-hat coupling function and a two-parameter truncated Fourier approximation to this function in Cartesian coordinates. The latter allows semi-analytical progress, including determination of stability properties, leading to a classification of possible behaviors of both static and moving chimera states. The transition from stationary to moving chimeras is shown to be accompanied by the appearance of complex filamentary structures within the incoherent spiral wave core representing secondary coherence regions associated with temporal resonances. As the parameters are varied the number of such filaments may grow, a process reflected in a series of folds in the corresponding bifurcation diagram showing the drift speedsas a function of the phase-lag parameterα.

    more » « less
  2. Abstract Similar activity patterns may arise from model neural networks with distinct coupling properties and individual unit dynamics. These similar patterns may, however, respond differently to parameter variations and specifically to tuning of inputs that represent control signals. In this work, we analyze the responses resulting from modulation of a localized input in each of three classes of model neural networks that have been recognized in the literature for their capacity to produce robust three-phase rhythms: coupled fast-slow oscillators, near-heteroclinic oscillators, and threshold-linear networks. Triphasic rhythms, in which each phase consists of a prolonged activation of a corresponding subgroup of neurons followed by a fast transition to another phase, represent a fundamental activity pattern observed across a range of central pattern generators underlying behaviors critical to survival, including respiration, locomotion, and feeding. To perform our analysis, we extend the recently developed local timing response curve (lTRC), which allows us to characterize the timing effects due to perturbations, and we complement our lTRC approach with model-specific dynamical systems analysis. Interestingly, we observe disparate effects of similar perturbations across distinct model classes. Thus, this work provides an analytical framework for studying control of oscillations in nonlinear dynamical systems and may help guide model selection in future efforts to study systems exhibiting triphasic rhythmic activity. 
    more » « less
  3. One of the simplest mathematical models in the study of nonlinear systems is the Kuramoto model, which describes synchronization in systems from swarms of insects to superconductors. We have recently found a connection between the original, real-valued nonlinear Kuramoto model and a corresponding complex-valued system that permits describing the system in terms of a linear operator and iterative update rule. We now use this description to investigate three major synchronization phenomena in Kuramoto networks (phase synchronization, chimera states, and traveling waves), not only in terms of steady state solutions but also in terms of transient dynamics and individual simulations. These results provide new mathematical insight into how sophisticated behaviors arise from connection patterns in nonlinear networked systems. 
    more » « less
  4. Dimerized valence bond solids appear naturally in spin-1/2 systems on bipartite lattices, with the geometric frustrations playing a key role both in their stability and the eventual `melting' due to quantum fluctuations. Here, we ask the question of the stability of such dimerized solids in spin-1 systems, taking the anisotropic square lattice with bilinear and biquadratic spin-spin interactions as a paradigmatic model. The lattice can be viewed as a set of coupled spin-1 chains, which in the limit of vanishing inter-chain coupling are known to possess a stable dimer phase. We study this model using the density matrix renormalization group (DMRG) and infinite projected entangled-pair states (iPEPS) techniques, supplemented by the analytical mean-field and linear flavor wave theory calculations. While the latter predicts the dimer phase to remain stable up to a reasonably large interchain-to-intrachain coupling ratio r≲0.6, the DMRG and iPEPS find that the dimer solid melts for much weaker interchain coupling not exceeding r≲0.15. We find the transition into a magnetically ordered state to be first order, manifested by a hysteresis and order parameter jump, precluding the deconfined quantum critical scenario. The apparent lack of stability of dimerized phases in 2D spin-1 systems is indicative of strong quantum fluctuations that melt the dimer solid. 
    more » « less
  5. Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function Q 1 * ( x ) that greatly simplifies and unifies the mathematical description of the oscillator’s spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function Q 1 * ( x ) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ 1 = μ 1 + iω 1 . The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω 1 and half-width μ 1 ; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω 1 ; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators. 
    more » « less