skip to main content

Title: Historical socioecological transformations in the global tropics as an Anthropocene analogue

Large, low-density settlements of the tropical world disintegrated during the first and second millennia of the CE. This phenomenon, which occurred in South Asia, Southeast Asia, and Mesoamerica, is strongly associated with climate variability and extensive landscape transformation. These profound social transformations in the tropical world have been popularized as “collapse,” yet archaeological evidence suggests a more complex and nuanced story characterized by persistence, adaptation, and resilience at the local and regional scales. The resulting tension between ideas of climate-driven collapse and evidence for diverse social responses challenges our understanding of long-term resilience and vulnerability to environmental change in the global tropics. Here, we compare the archetypal urban collapse of the Maya, in modern Belize, Guatemala, Honduras, and Mexico, during the 8th to 11th centuries CE, and the Khmer in modern Cambodia, Laos, Thailand, and Vietnam during the 14th to 15th centuries CE. We argue that the social response to environmental stress is spatially and temporally heterogenous, reflecting the generation of large-scale landesque capital surrounding the urban cores. Divergences between vulnerable urban elite and apparently resilient dispersed agricultural settlements sit uncomfortably with simplistic notions of social collapse and raise important questions for humanity as we move deeper into the Anthropocene.

Authors:
;
Publication Date:
NSF-PAR ID:
10307014
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
40
Page Range or eLocation-ID:
Article No. e2022211118
ISSN:
0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The world is facing new environmental challenges that may trigger the collapse of some social-ecological systems (SES). More extreme weather events may be much more common in the decades to come due to climate change. Although we have an idea of what climatic events to expect in each region, we know less about how SES can cope with these challenges. We study The Peruvian Piura Basin, which has been exposed to harsh environmental events associated with the El Niño Southern Oscillation (ENSO) for centuries. The Piura basin was home to the ancient Moche civilization, which collapsed due to a combination of factors, but strong El Niño events likely played a significant role. To analyze the resilience of The Piura Basin to flood events, we used as guidance the Robustness Framework and different propositions from prominent collapse theories to carry out a longitudinal study based on both primary and collected secondary data. We found that the Piura basin is very fragile based on almost all of the predictions of collapse theories (especially with respect to selfish elites, centralized governance, systems interconnection, anticipation capacity and sensitive dependence on resources), but the biggest strength is its growing stock of social capital. Inmore »small steps, user associations have been collectively working towards solutions for water conservation and public-infrastructure maintenance. There is a long way to go, but with the right policies to encourage the strengthening of these associations, the Piura basin could become more resilient to future El Niño events. This study also provides methodological and theoretical insights that can contribute to theory building for the resilience of SES.

    « less
  2. Abstract The impact of climate extremes upon human settlements is expected to accelerate. There are distinct global trends for a continued rise in urban dwellers and associated infrastructure. This growth is occurring amidst the increasing risk of extreme heat, rainfall, and flooding. Therefore, it is critical that the urban development and architectural communities recognize climate impacts are expected to be experienced globally, but the cities and urban regions they help create are far more vulnerable to these extremes than nonurban regions. Designing resilient human settlements responding to climate change needs an integrated framework. The critical elements at play are climate extremes, economic growth, human mobility, and livability. Heightened public awareness of extreme weather crises and demands for a more moral climate landscape has promoted the discussion of urban climate change ethics. With the growing urgency for considering environmental justice, we need to consider a transparent, data-driven geospatial design approach that strives to balance environmental justice, climate, and economic development needs. Communities can greatly manage their vulnerabilities under climate extremes and enhance their resilience through appropriate design and planning towards long-term stability. A holistic picture of urban climate science is thus needed to be adopted by urban designers and planners asmore »a principle to guide urban development strategy and environmental regulation in the context of a growingly interdependent world.« less
  3. Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages—the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014–2017 global coral bleach- ing event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
  4. This perspective paper highlights the potentials, limitations, and combinations of openly available Earth observation (EO) data and big data in the context of environmental research in urban areas. The aim is to build the resilience of informal settlements to climate change impacts. In particular, it highlights the types, categories, spatial and temporal scales of publicly available big data. The benefits of publicly available big data become clear when looking at issues such as the development and quality of life in informal settlements within and around major African cities. Sub-Saharan African (SSA) cities are among the fastest growing urban areas in the world. However, they lack spatial information to guide urban planning towards climate-adapted cities and fair living conditions for disadvantaged residents who mostly reside in informal settlements. Therefore, this study collected key information on freely available data such as data on land cover, land use, and environmental hazards and pressures, demographic and socio-economic indicators for urban areas. They serve as a vital resource for success of many other related local studies, such as the transdisciplinary research project “DREAMS—Developing REsilient African cities and their urban environMent facing the provision of essential urban SDGs”. In the era of exponential growth of bigmore »data analytics, especially geospatial data, their utility in SSA is hampered by the disparate nature of these datasets due to the lack of a comprehensive overview of where and how to access them. This paper aims to provide transparency in this regard as well as a resource to access such datasets. Although the limitations of such big data are also discussed, their usefulness in assessing environmental hazards and human exposure, especially to climate change impacts, are emphasised.« less
  5. Abstract

    The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.