Abstract Synoptic sampling of streams is an inexpensive way to gain insight into the spatial distribution of dissolved constituents in the subsurface critical zone. Few spatial synoptics have focused on urban watersheds although this approach is useful in urban areas where monitoring wells are uncommon. Baseflow stream sampling was used to quantify spatial variability of water chemistry in a highly developed Piedmont watershed in suburban Baltimore, MD having no permitted point discharges. Six synoptic surveys were conducted from 2014 to 2016 after an average of 10 days of no rain, when stream discharge was composed of baseflow from groundwater. Samples collected every 50 m over 5 km were analyzed for nitrate, sulfate, chloride, fluoride, and water stable isotopes. Longitudinal spatial patterns differed across constituents for each survey, but the pattern for each constituent varied little across synoptics. Results suggest a spatially heterogeneous, three‐dimensional pattern of localized groundwater contaminant zones steadily contributing solutes to the stream network, where high concentrations result from current and legacy land use practices. By contrast, observations from 35 point piezometers indicate that sparse groundwater measurements are not a good predictor of baseflow stream chemistry in this geologic setting. Cross‐covariance analysis of stream solute concentrations with groundwater model/backward particle tracking results suggest that spatial changes in base‐flow solute concentrations are associated with urban features such as impervious surface area, fill, and leaking potable water and sanitary sewer pipes. Predicted subsurface residence times suggest that legacy solute sources drive baseflow stream chemistry in the urban critical zone.
more »
« less
The Hydrological Urban Heat Island: Determinants of Acute and Chronic Heat Stress in Urban Streams
Abstract During and after rainfall events, the interaction of precipitation with hot urban pavements leads to hot runoff, and its merger with urban streams can result in an abrupt change in water temperature that can harm aquatic ecosystems. To understand this phenomenon and its relation to land cover and hydrometeorological parameters, we analyzed data spanning two years from 100 sites in the eastern United States. To identify surges, we first isolated temperature jumps of at least 0.5°C over 15 min occurring simultaneously with water flow increase. Surge magnitude was defined as the difference between peak stream temperature and baseflow temperature right before the jump. At least 10 surges were observed in 53 of the studied streams, with some surges exceeding 10°C. Our results demonstrate that the watershed developed area and vegetation fraction are the best descriptors of surge frequency (Spearman correlation of 0.76 and 0.77, respectively). On the other hand, for surge magnitude and peak temperature, the primary drivers are stream discharge and stream temperature immediately before the surge. In general, the more urbanized streams were found to be already warmer than their more “vegetated” counterparts during baseflow conditions, and were also the most affected by temperature surges. Together, these findings suggest the existence of a hydrological urban heat island, here defined as the increase in stream temperature (chronic and/or acute), caused by increased urbanization.
more »
« less
- Award ID(s):
- 1855277
- PAR ID:
- 10307070
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- JAWRA Journal of the American Water Resources Association
- Volume:
- 57
- Issue:
- 6
- ISSN:
- 1093-474X
- Page Range / eLocation ID:
- p. 941-955
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Evaporative misters have long been used in urban spaces for heat mitigation, yet their thermal stress impacts and optimal operating conditions have not been fully explored. To fill this gap, we develop a misting model and embed it into an urban canopy model for the first time. Our tests confirm that misters can considerably reduce maximum urban canyon air temperature (up to 17.5 °C) and human skin temperature (up to 0.48 °C) in a hot and dry city (Phoenix, AZ). They continue to effectively reduce thermal stress, albeit with half of the cooling benefits, in a hot and humid city (Houston, TX). These thermal stress impacts are contingent upon wind speeds: the optimal wind speeds generally fall within an intermediate range—from light air (with low mist flow rates) to a moderate breeze (with higher mist flow rates). We then incorporate misting into a broader comparison of blue cooling strategies, including irrigation (on vegetation) and sprinkling (on pavements). With abundant water resources, sprinkling on asphalt and misting are the most effective cooling solutions, particularly suitable for middays and late afternoons, respectively. To balance cooling benefits with limited water resources, we propose a thermostatic control scheme that can save at least 10.5 m3/day of water compared to continuous misting for a 100-m stretch of street, equivalent to the water demand of about 20 Phoenix residents. Notably, misting and sprinkling generate rapid cooling in under 10 min with sufficient flow rates, demonstrating their potential as fast activation measures during extreme heat emergencies.more » « less
-
Water quality sensors were placed in 3 urban streams in Cleveland, OH and 4 urban streams in Denver, CO to estimate stream metabolism and assess response to high flow events. MiniDOT (dissolved oxygen and temperature) and Onset (specific conductance) sensors were placed mid-channel near USGS gages. Light was measured as global horizontal irradiance (GHI) and supplied by SolCast. Data collection was part of the NSF STORMS project (PI Jefferson, co-PIs Costello, Bhaskar, Turner). Specific conductance, dissolved oxygen, and light were measured every 10 minutes. Sensors were removed during winter months to avoid damage. Datasets were cleaned to remove values when sensors were out of water, buried, and removed for maintenance/calibration.more » « less
-
Biogenic isoprene emissions from herbaceous plants are generally lower than those from trees. However, our study finds widespread isoprene emission in herbaceous sedge plants, with a stronger temperature response surpassing current tree-derived models. We measured and compared isoprene emissions from sedges grown in different climatic zones, all showing an exponential temperature response with a Q10 range of 7.2 to 12, significantly higher than the Q10 of about 3 for other common isoprene emitters. The distinct temperature sensitivity of sedges makes them a hidden isoprene source, significant during heat waves but not easily detected in mild weather. For instance, isoprene emissions fromCarex praegraciliscan increase by 320% with a peak emission of over 100 nmol m−2s−1compared to preheat wave emissions. During heat waves, the peak isoprene emissions fromC. praegraciliscan match those fromLophostemon confertus, a commonly used street tree species which is considered the dominant urban isoprene source due to higher biomass and emission capacities. This surge in isoprene from globally distributed sedges, including those in urban landscapes, could contribute to peak ozone and aerosol pollutants during heat waves.more » « less
-
Abstract Elevated nutrient and suspended sediment concentrations often result in negative environmental impacts within freshwater environments. Studies that directly compare suspended sediment and bioavailable nutrients between predominantly agricultural and predominantly urban watersheds during baseflow conditions are largely lacking. The purpose of this study was to determine the impacts of land cover, stream discharge, and wastewater treatment plant (WWTP) discharge on nutrient and sediment concentrations, across a large land cover gradient in Southwest Ohio streams. Weekly baseflow samples were collected from eight streams over 1 year from November, 2016 through November, 2017. Total suspended sediment, nitrate, and phosphate concentrations were measured. Results indicate that agricultural land cover and WWTPs increase nitrate and phosphate concentrations in the study area. Total suspended sediment and nitrate concentrations increased with discharge, and discharge was a relatively weak predictor of phosphate concentrations. Seasonal water quality trends varied by parameter and land use also had unique impacts on seasonal water quality trends. Results suggest that to improve water quality in the study area, efforts should focus on improving WWTP effluent treatment and agricultural land management.more » « less
An official website of the United States government
