Developing and using models to make sense of phenomena or to design solutions to problems is a key science and engineering practice. Classroom use of technology-based tools can promote the development of students’ modelling practice, systems thinking, and causal reasoning by providing opportunities to develop and use models to explore phenomena. In previous work, we presented four aspects of system modelling that emerged during our development and initial testing of an online system modelling tool. In this study, we provide an in-depth examination and detailed evidence of 10th grade students engaging in those four aspects during a classroom enactment of a system modelling unit. We look at the choices students made when constructing their models, whether they described evidence and reasoning for those choices, and whether they described the behavior of their models in connection with model usefulness in explaining and making predictions about the phenomena of interest. We conclude with a set of recommendations for designing curricular materials that leverage digital tools to facilitate the iterative constructing, using, evaluating, and revising of models.
more » « less- Award ID(s):
- 1842035
- PAR ID:
- 10307091
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Science Education and Technology
- Volume:
- 31
- Issue:
- 2
- ISSN:
- 1059-0145
- Page Range / eLocation ID:
- p. 217-231
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper discusses the potential of two computational modeling approaches in moving students from simple linear causal reasoning to applying more complex aspects of systems thinking (ST) in explanations of scientific phenomena. While linear causal reasoning can help students understand some natural phenomena, it may not be sufficient for understanding more complex issues such as global warming and pandemics, which involve feedback, cyclic patterns, and equilibrium. In contrast, ST has shown promise as an approach for making sense of complex problems. To facilitate ST, computational modeling tools have been developed, but it is not clear to what extent different approaches promote specific aspects of ST and whether scaffolding such thinking should start with supporting students first in linear causal reasoning before moving to more complex causal dimensions. This study compares two computational modeling approaches, static equilibrium and system dynamics modeling, and their potential to engage students in applying ST aspects in their explanations of the evaporative cooling phenomenon. To make such a comparison we analyzed 10th grade chemistry students’ explanations of the phenomenon as they constructed and used both modeling approaches. The findings suggest that using a system dynamics approach prompts more complex reasoning aligning with ST aspects. However, some students remain resistant to the application of ST and continue to favor linear causal explanations with both modeling approaches. This study provides evidence for the potential of using system dynamics models in applying ST. In addition, the results raise questions about whether linear causal reasoning may serve as a scaffold for engaging students in more sophisticated types of reasoning.more » « less
-
Abstract Engineering design provides unique ways to include epistemic tools to support collaborative sense‐making, reasoning with evidence, and assessing knowledge. Engineering design processes often require students to apply science concepts to solve problems. We draw from five engineering curricular units that engaged students in specific epistemic practices of engineering: constructing models and prototypes, making trade‐offs between criteria and constraints, and communicating through uses of conventionalized verbal, written, and symbolic models. Through analysis of curriculum products, student artifacts, and classroom discourse, we show how engaging in such practices requires the use of epistemic tools that shape, and are shaped by, the knowledge construction work of the members of the classrooms. The epistemic tools foster creating, sharing, and assessing knowledge claims. Six principles of practice for education demonstrate how such tools can be educative. These principles evince how epistemic tools support goal‐directed, concerted activity that can support the learning of disciplinary knowledge and practice and offer the potential to increase student agency.
-
Abstract Constructing explanatory models, in which students learn to visualize the mechanisms of unobservable entities (e.g., molecules) to explain the working of observable phenomena (e.g., air pressure), is a key practice of science. Yet, students struggle to develop and utilize such models to articulate causal‐mechanistic explanations. In this paper, we argue that representational gesturing with the hands (i.e., gesturing that models semantic content) can support the development of explanatory models. Through case studies examining middle school students gesturing during sensemaking, we show that representational gestures can support students in at least four ways: (a) they make underlying mechanisms visible, (b) they facilitate translation of a spatial model to a verbal explanation, (c) they enable model articulation while relying less on scientific terminology, and (d) they present opportunities for students to embody causal agents. In these ways, representational gesturing can be considered an epistemic tool supporting students during sensemaking and communication. We argue that instruction should attend to students’ gestures and, as appropriate, encourage students to gesture as a means of aiding the construction and articulation of causal‐mechanistic explanations. While our study explores one form of embodied representation, we encourage the field to explore embodied expressions as epistemic tools for learning.
-
Abstract This study proposes a strategic framework to guide teachers’ curriculum adaptation, planning, and enactment as a lever for redistributing epistemic agency. This framework intends to position teachers as strategic decision‐makers around when and how to open up aspects of their curriculum. We argue that seeing the aspects of Next Generation Science Standards‐aligned curricula—the methods of investigation, the anchoring phenomena, and the explanatory models students construct—as entry points for redistributing epistemic agency may help teachers make inroads to shifting their classroom practice towards more responsive instruction. Importantly, our tool acknowledges that there are different “levels” at which teachers might strategically decide to open up space for student decision‐making. These decisions may have a differential impact on students’ subsequent participation in science practices. In this paper, we will use three cases to highlight the specific and incremental ways that teachers can open up aspects of the curriculum and how those openings redistributed epistemic agency in their classroom. We argue that this framework may be used as a tool for engaging teachers in conversation about how they can begin to position students as partners in the epistemic decisions that drive classroom activity.
-
Recent educational reforms conceptualize science classrooms as spaces where students engage in Science-as-Practice to develop deep understandings of scientific phenomena. When students engage in Science-as-Practice they are constructing explanations, arguing from evidence, and evaluating and communicating information to develop scientific knowledge (NGSS Lead States, 2013). This process of learning requires a focus on productive science talk in which students grapple with and socially negotiate their ideas (Kelly, 2014) through interactions involving talk, joint attention, and shared activity aimed at building, negotiating, and refining new understandings of phenomena and relevant science concepts (Ford, 2015; Michaels & O’Connor, 2012). Productive talk requires the ‘nimble’ involvement of the teacher to help students productively contribute their ideas to the class and use them as resources to drive instructional activities supporting the development and refinement of more sophisticated scientific understandings (Christodoulou & Osborne, 2014; González‐Howard & McNeill, 2020).more » « less