skip to main content

Title: Supporting Student System Modelling Practice Through Curriculum and Technology Design
Abstract

Developing and using models to make sense of phenomena or to design solutions to problems is a key science and engineering practice. Classroom use of technology-based tools can promote the development of students’ modelling practice, systems thinking, and causal reasoning by providing opportunities to develop and use models to explore phenomena. In previous work, we presented four aspects of system modelling that emerged during our development and initial testing of an online system modelling tool. In this study, we provide an in-depth examination and detailed evidence of 10th grade students engaging in those four aspects during a classroom enactment of a system modelling unit. We look at the choices students made when constructing their models, whether they described evidence and reasoning for those choices, and whether they described the behavior of their models in connection with model usefulness in explaining and making predictions about the phenomena of interest. We conclude with a set of recommendations for designing curricular materials that leverage digital tools to facilitate the iterative constructing, using, evaluating, and revising of models.

Authors:
; ; ; ;
Award ID(s):
1842035
Publication Date:
NSF-PAR ID:
10307091
Journal Name:
Journal of Science Education and Technology
ISSN:
1059-0145
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. This fundamental research in pre-college education engineering study investigates the ways in which elementary school students and their teacher balance the tradeoffs in engineering design. STEM education reforms promote the engagement of K-12 students in the epistemic practices of disciplinary experts to teach content.1,2,3 This emphasis on practices is a paradigm shift that requires both extensive professional development and research to learn about the ways in which students and teacher learn about and participate in these practices. Balancing tradeoffs is an important practice in engineering but most often in classroom curricula it is embedded in the concept of iteration1,4; however, improving a design is not always the same as balancing trade-offs.1 Optimizing a multivariate problem requires students to engage in a number of engineering practices, like considering multiple solution, making tradeoffs between criteria and constraints, applying math and science knowledge to problem solving, constructing models, making evidence-based decisions, and assessing the implications of solutions5. The ways in which teachers and students collectively balance these tradeoffs in a design has been understudied1. Our primary research questions are, “How do teachers and students make decisions about making tradeoffs between criteria and constraints” and “How do experiences in teacher workshops affect the waysmore »they implement engineering projects in their classes.” We take an ethnographic perspective to investigate these phenomena, and collected video data, field notes, student journals, and semi-structured interviews of eight elementary teachers in a workshop and similar data from two of the workshop teachers’ classes as they implemented the curriculum they learned in the workshop. Our analyses focus on the disciplinary practices teachers and students use to make decisions for balancing tradeoffs, how they are supported (or impeded) by teachers, and how they justify these decisions. Similarly, we compared two of the teachers wearing their “student hat” in the workshop as well as their “teacher hat” in the classroom5. Our analyses suggest three significant findings. First, teachers and students tended to focus on one criterion (e.g. cost, performance) and had few discussions about trying to minimize cost and maximize performance. Second, curriculum design significantly impacts the choices students make. Using two examples, we will show the impact of weighting criteria differently on the design strategies teachers and students make. Last, we noted most of the feedback given was related to managing classroom activity rather than supporting students’ designs. Implications of this study are relevant to both engineering educators and engineering curriculum developers.« less
  2. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to themore »claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms.« less
  3. This work-in-progress paper describes a collaborative effort between engineering education and machine learning researchers to automate analysis of written responses to conceptually challenging questions in mechanics. These qualitative questions are often used in large STEM classes to support active learning pedagogies; they require minimum calculations and focus on the application of underlying physical phenomena to various situations. Active learning pedagogies using this type of questions has been demonstrated to increase student achievement (Freeman et al., 2014; Hake, 1998) and engagement (Deslauriers, et al., 2011) of all students (Haak et al., 2011). To emphasize reasoning and sense-making, we use the Concept Warehouse (Koretsky et al., 2014), an audience response system where students provide written justifications to concept questions. Written justifications better prepare students for discussions with peers and in the whole class and can also improve students’ answer choices (Koretsky et al., 2016a, 2016b). In addition to their use as a tool to foster learning, written explanations can also provide valuable information to concurrently assess that learning (Koretsky and Magana, 2019). However, in practice, there has been limited deployment of written justifications with concept questions, in part, because they provide a daunting amount of information for instructors to process and formore »researchers to analyze. In this study, we describe the initial evaluation of large pre-trained generative sequence-to-sequence language models (Raffel et al., 2019; Brown et al., 2020) to automate the laborious coding process of student written responses. Adaptation of machine learning algorithms in this context is challenging since each question targets specific concepts which elicit their own unique reasoning processes. This exploratory project seeks to utilize responses collected through the Concept Warehouse to identify viable strategies for adapting machine learning to support instructors and researchers in identifying salient aspects of student thinking and understanding with these conceptually challenging questions.« less
  4. Obeid, Iyad Selesnick (Ed.)
    Electroencephalography (EEG) is a popular clinical monitoring tool used for diagnosing brain-related disorders such as epilepsy [1]. As monitoring EEGs in a critical-care setting is an expensive and tedious task, there is a great interest in developing real-time EEG monitoring tools to improve patient care quality and efficiency [2]. However, clinicians require automatic seizure detection tools that provide decisions with at least 75% sensitivity and less than 1 false alarm (FA) per 24 hours [3]. Some commercial tools recently claim to reach such performance levels, including the Olympic Brainz Monitor [4] and Persyst 14 [5]. In this abstract, we describe our efforts to transform a high-performance offline seizure detection system [3] into a low latency real-time or online seizure detection system. An overview of the system is shown in Figure 1. The main difference between an online versus offline system is that an online system should always be causal and has minimum latency which is often defined by domain experts. The offline system, shown in Figure 2, uses two phases of deep learning models with postprocessing [3]. The channel-based long short term memory (LSTM) model (Phase 1 or P1) processes linear frequency cepstral coefficients (LFCC) [6] features from each EEGmore »channel separately. We use the hypotheses generated by the P1 model and create additional features that carry information about the detected events and their confidence. The P2 model uses these additional features and the LFCC features to learn the temporal and spatial aspects of the EEG signals using a hybrid convolutional neural network (CNN) and LSTM model. Finally, Phase 3 aggregates the results from both P1 and P2 before applying a final postprocessing step. The online system implements Phase 1 by taking advantage of the Linux piping mechanism, multithreading techniques, and multi-core processors. To convert Phase 1 into an online system, we divide the system into five major modules: signal preprocessor, feature extractor, event decoder, postprocessor, and visualizer. The system reads 0.1-second frames from each EEG channel and sends them to the feature extractor and the visualizer. The feature extractor generates LFCC features in real time from the streaming EEG signal. Next, the system computes seizure and background probabilities using a channel-based LSTM model and applies a postprocessor to aggregate the detected events across channels. The system then displays the EEG signal and the decisions simultaneously using a visualization module. The online system uses C++, Python, TensorFlow, and PyQtGraph in its implementation. The online system accepts streamed EEG data sampled at 250 Hz as input. The system begins processing the EEG signal by applying a TCP montage [8]. Depending on the type of the montage, the EEG signal can have either 22 or 20 channels. To enable the online operation, we send 0.1-second (25 samples) length frames from each channel of the streamed EEG signal to the feature extractor and the visualizer. Feature extraction is performed sequentially on each channel. The signal preprocessor writes the sample frames into two streams to facilitate these modules. In the first stream, the feature extractor receives the signals using stdin. In parallel, as a second stream, the visualizer shares a user-defined file with the signal preprocessor. This user-defined file holds raw signal information as a buffer for the visualizer. The signal preprocessor writes into the file while the visualizer reads from it. Reading and writing into the same file poses a challenge. The visualizer can start reading while the signal preprocessor is writing into it. To resolve this issue, we utilize a file locking mechanism in the signal preprocessor and visualizer. Each of the processes temporarily locks the file, performs its operation, releases the lock, and tries to obtain the lock after a waiting period. The file locking mechanism ensures that only one process can access the file by prohibiting other processes from reading or writing while one process is modifying the file [9]. The feature extractor uses circular buffers to save 0.3 seconds or 75 samples from each channel for extracting 0.2-second or 50-sample long center-aligned windows. The module generates 8 absolute LFCC features where the zeroth cepstral coefficient is replaced by a temporal domain energy term. For extracting the rest of the features, three pipelines are used. The differential energy feature is calculated in a 0.9-second absolute feature window with a frame size of 0.1 seconds. The difference between the maximum and minimum temporal energy terms is calculated in this range. Then, the first derivative or the delta features are calculated using another 0.9-second window. Finally, the second derivative or delta-delta features are calculated using a 0.3-second window [6]. The differential energy for the delta-delta features is not included. In total, we extract 26 features from the raw sample windows which add 1.1 seconds of delay to the system. We used the Temple University Hospital Seizure Database (TUSZ) v1.2.1 for developing the online system [10]. The statistics for this dataset are shown in Table 1. A channel-based LSTM model was trained using the features derived from the train set using the online feature extractor module. A window-based normalization technique was applied to those features. In the offline model, we scale features by normalizing using the maximum absolute value of a channel [11] before applying a sliding window approach. Since the online system has access to a limited amount of data, we normalize based on the observed window. The model uses the feature vectors with a frame size of 1 second and a window size of 7 seconds. We evaluated the model using the offline P1 postprocessor to determine the efficacy of the delayed features and the window-based normalization technique. As shown by the results of experiments 1 and 4 in Table 2, these changes give us a comparable performance to the offline model. The online event decoder module utilizes this trained model for computing probabilities for the seizure and background classes. These posteriors are then postprocessed to remove spurious detections. The online postprocessor receives and saves 8 seconds of class posteriors in a buffer for further processing. It applies multiple heuristic filters (e.g., probability threshold) to make an overall decision by combining events across the channels. These filters evaluate the average confidence, the duration of a seizure, and the channels where the seizures were observed. The postprocessor delivers the label and confidence to the visualizer. The visualizer starts to display the signal as soon as it gets access to the signal file, as shown in Figure 1 using the “Signal File” and “Visualizer” blocks. Once the visualizer receives the label and confidence for the latest epoch from the postprocessor, it overlays the decision and color codes that epoch. The visualizer uses red for seizure with the label SEIZ and green for the background class with the label BCKG. Once the streaming finishes, the system saves three files: a signal file in which the sample frames are saved in the order they were streamed, a time segmented event (TSE) file with the overall decisions and confidences, and a hypotheses (HYP) file that saves the label and confidence for each epoch. The user can plot the signal and decisions using the signal and HYP files with only the visualizer by enabling appropriate options. For comparing the performance of different stages of development, we used the test set of TUSZ v1.2.1 database. It contains 1015 EEG records of varying duration. The any-overlap performance [12] of the overall system shown in Figure 2 is 40.29% sensitivity with 5.77 FAs per 24 hours. For comparison, the previous state-of-the-art model developed on this database performed at 30.71% sensitivity with 6.77 FAs per 24 hours [3]. The individual performances of the deep learning phases are as follows: Phase 1’s (P1) performance is 39.46% sensitivity and 11.62 FAs per 24 hours, and Phase 2 detects seizures with 41.16% sensitivity and 11.69 FAs per 24 hours. We trained an LSTM model with the delayed features and the window-based normalization technique for developing the online system. Using the offline decoder and postprocessor, the model performed at 36.23% sensitivity with 9.52 FAs per 24 hours. The trained model was then evaluated with the online modules. The current performance of the overall online system is 45.80% sensitivity with 28.14 FAs per 24 hours. Table 2 summarizes the performances of these systems. The performance of the online system deviates from the offline P1 model because the online postprocessor fails to combine the events as the seizure probability fluctuates during an event. The modules in the online system add a total of 11.1 seconds of delay for processing each second of the data, as shown in Figure 3. In practice, we also count the time for loading the model and starting the visualizer block. When we consider these facts, the system consumes 15 seconds to display the first hypothesis. The system detects seizure onsets with an average latency of 15 seconds. Implementing an automatic seizure detection model in real time is not trivial. We used a variety of techniques such as the file locking mechanism, multithreading, circular buffers, real-time event decoding, and signal-decision plotting to realize the system. A video demonstrating the system is available at: https://www.isip.piconepress.com/projects/nsf_pfi_tt/resources/videos/realtime_eeg_analysis/v2.5.1/video_2.5.1.mp4. The final conference submission will include a more detailed analysis of the online performance of each module. ACKNOWLEDGMENTS Research reported in this publication was most recently supported by the National Science Foundation Partnership for Innovation award number IIP-1827565 and the Pennsylvania Commonwealth Universal Research Enhancement Program (PA CURE). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the official views of any of these organizations. REFERENCES [1] A. Craik, Y. He, and J. L. Contreras-Vidal, “Deep learning for electroencephalogram (EEG) classification tasks: a review,” J. Neural Eng., vol. 16, no. 3, p. 031001, 2019. https://doi.org/10.1088/1741-2552/ab0ab5. [2] A. C. Bridi, T. Q. Louro, and R. C. L. Da Silva, “Clinical Alarms in intensive care: implications of alarm fatigue for the safety of patients,” Rev. Lat. Am. Enfermagem, vol. 22, no. 6, p. 1034, 2014. https://doi.org/10.1590/0104-1169.3488.2513. [3] M. Golmohammadi, V. Shah, I. Obeid, and J. Picone, “Deep Learning Approaches for Automatic Seizure Detection from Scalp Electroencephalograms,” in Signal Processing in Medicine and Biology: Emerging Trends in Research and Applications, 1st ed., I. Obeid, I. Selesnick, and J. Picone, Eds. New York, New York, USA: Springer, 2020, pp. 233–274. https://doi.org/10.1007/978-3-030-36844-9_8. [4] “CFM Olympic Brainz Monitor.” [Online]. Available: https://newborncare.natus.com/products-services/newborn-care-products/newborn-brain-injury/cfm-olympic-brainz-monitor. [Accessed: 17-Jul-2020]. [5] M. L. Scheuer, S. B. Wilson, A. Antony, G. Ghearing, A. Urban, and A. I. Bagic, “Seizure Detection: Interreader Agreement and Detection Algorithm Assessments Using a Large Dataset,” J. Clin. Neurophysiol., 2020. https://doi.org/10.1097/WNP.0000000000000709. [6] A. Harati, M. Golmohammadi, S. Lopez, I. Obeid, and J. Picone, “Improved EEG Event Classification Using Differential Energy,” in Proceedings of the IEEE Signal Processing in Medicine and Biology Symposium, 2015, pp. 1–4. https://doi.org/10.1109/SPMB.2015.7405421. [7] V. Shah, C. Campbell, I. Obeid, and J. Picone, “Improved Spatio-Temporal Modeling in Automated Seizure Detection using Channel-Dependent Posteriors,” Neurocomputing, 2021. [8] W. Tatum, A. Husain, S. Benbadis, and P. Kaplan, Handbook of EEG Interpretation. New York City, New York, USA: Demos Medical Publishing, 2007. [9] D. P. Bovet and C. Marco, Understanding the Linux Kernel, 3rd ed. O’Reilly Media, Inc., 2005. https://www.oreilly.com/library/view/understanding-the-linux/0596005652/. [10] V. Shah et al., “The Temple University Hospital Seizure Detection Corpus,” Front. Neuroinform., vol. 12, pp. 1–6, 2018. https://doi.org/10.3389/fninf.2018.00083. [11] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011. https://dl.acm.org/doi/10.5555/1953048.2078195. [12] J. Gotman, D. Flanagan, J. Zhang, and B. Rosenblatt, “Automatic seizure detection in the newborn: Methods and initial evaluation,” Electroencephalogr. Clin. Neurophysiol., vol. 103, no. 3, pp. 356–362, 1997. https://doi.org/10.1016/S0013-4694(97)00003-9.« less
  5. Abstract Graphing is an important practice for scientists and in K-16 science curricula. Graphs can be constructed using an array of software packages as well as by hand, with pen-and-paper. However, we have an incomplete understanding of how students’ graphing practice vary by graphing environment; differences could affect how best to teach and assess graphing. Here we explore the role of two graphing environments in students’ graphing practice. We studied 43 undergraduate biology students’ graphing practice using either pen-and-paper (PP) ( n  = 21 students) or a digital graphing tool GraphSmarts (GS) ( n  = 22 students). Participants’ graphs and verbal justifications were analyzed to identify features such as the variables plotted, number of graphs created, raw data versus summarized data plotted, and graph types (e.g., scatter plot, line graph, or bar graph) as well as participants’ reasoning for their graphing choices. Several aspects of participant graphs were similar regardless of graphing environment, including plotting raw vs. summarized data, graph type, and overall graph quality, while GS participants were more likely to plot the most relevant variables. In GS, participants could easily make more graphs than in PP and this may have helped some participants show latent features of their graphing practice.more »Those students using PP tended to focus more on ease of constructing the graph than GS. This study illuminates how the different characteristics of the graphing environment have implications for instruction and interpretation of assessments of student graphing practices.« less