skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Relativistic short-pulse high harmonic generation at 1.3 and 2.1 μm wavelengths
Abstract

While nearly all investigations of high order harmonic generation with relativistically intense laser pulses have taken place at 800 or 1053 nm, very few experimental studies have been done at other wavelengths. In this study, we investigate the scaling of relativistic high harmonic generation towards longer wavelengths at intensities ofa0 ∼ 1. Longer driver wavelengths enable enhanced diagnostics of the harmonic emission, as multiple orders lie in the optical regime. We measure the conversion efficiency by collecting the entire harmonic emission as well as the divergence through direct imaging. We compare the emission with 2D particle-in-cell simulations to determine the experimental target conditions. This new regime of high order harmonic generation also enables relativistic scaling as well as improved discrimination of harmonic generation mechanisms.

 
more » « less
NSF-PAR ID:
10307153
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
New Journal of Physics
Volume:
21
Issue:
4
ISSN:
1367-2630
Page Range / eLocation ID:
Article No. 043052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser–matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8–1 μm, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6–2 μm range that has laid the foundation for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic generation, and laser–plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short- (1.4–3 μm), mid- (3–8 μm), and long-wave (8–15 μm) infrared laser technology, and finally provide examples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molecular fingerprint region, as well as the atmospheric infrared transparent window.

     
    more » « less
  2. Abstract

    We present a reproducible ab-initio method to produce benchmark tests between time-dependent Schrödinger equation (TDSE) in the single-active-electron approximation (SAE) and time-dependent density functional theory (TDDFT) in the highly nonlinear multiphoton and tunneling regime of strong-field physics. To this end we compare results for high-order harmonic generation from valence shells in atoms using the SAE-TDSE approach and TDDFT calculations. As key to the benchmark comparison we obtain an analytic form of SAE potentials based on density functional theory, which we applied for different atoms and ions. The ionization energies of atomic ground and excited states, as well as the energies of inner shells, for the SAE potentials agree well with experimental data. Using these potentials we find remarkable agreement between the results of the two independent numerical approaches (TDDFT and SAE-TDSE) for the high-order harmonic yields in helium, demonstrating the accuracy of the SAE potentials as well as the predictive power of SAE-TDSE and TDDFT calculations for the nonperturbative and highly nonlinear strong-field process of high harmonic generation in the ultraviolet and visible wavelength regime. Finally, as another application of the SAE potentials, high harmonic spectra from outer and inner valence shells are calculated and it is shown that unphysical artifacts in the SAE-spectra from the individual shells are removed once all the amplitudes are considered.

     
    more » « less
  3. Vigorous efforts to harness the topological properties of light have enabled a multitude of novel applications. Translating the applications of structured light to higher spatial and temporal resolutions mandates their controlled generation, manipulation, and thorough characterization in the short-wavelength regime. Here, we resort to high-order harmonic generation (HHG) in a noble gas to upconvert near-infrared (IR) vector, vortex, and vector-vortex driving beams that are tailored, respectively, in their spin angular momentum (SAM), orbital angular momentum (OAM), and simultaneously in their SAM and OAM. We show that HHG enables the controlled generation of extreme-ultraviolet (EUV) vector beams exhibiting various spatially dependent polarization distributions, or EUV vortex beams with a highly twisted phase. Moreover, we demonstrate the generation of EUV vector-vortex beams (VVB) bearing combined characteristics of vector and vortex beams. We rely on EUV wavefront sensing to unambiguously affirm the topological charge scaling of the HHG beams with the harmonic order. Interestingly, our work shows that HHG allows for a synchronous controlled manipulation of SAM and OAM. These EUV structured beams bring in the promising scenario of their applications at nanometric spatial and sub-femtosecond temporal resolutions using a table-top harmonic source. 
    more » « less
  4. Two-color laser beams are instrumental in light-field control and enhancement of high-order harmonic, spectral supercontinuum, and terahertz radiation generated in gases, plasmas, and solids. We demonstrate a multi-terawatt two-color beam produced using a relativistic plasma mirror, with 110 mJ at 800 nm and 30 mJ at 400 nm. Both color components have high spatial quality and can be simultaneously focused, provided that the plasma mirror lies within a Rayleigh range of the driving fundamental beam. Favorable scaling of second-harmonic generation by plasma mirrors at relativistic intensities suggests them as an excellent tool for multi-color waveform synthesis beyond the petawatt level.

     
    more » « less
  5. Second-harmonic generation (SHG) is a common technique with many applications. Common inorganic single-crystalline materials used to produce SHG light are effective using short IR/visible wavelengths but generally do not perform well at longer, technologically relevant IR wavelengths such as 1300, 1550, and 2000 nm. Efficient SHG materials possess many of the same key material properties as terahertz (THz) generators, and certain single-crystalline organic THz generation materials have been reported to perform at longer IR wavelengths. Consequently, this work focuses on characterizing three efficient organic THz generators for SHG, namely, DAST (trans-4-[4-(dimethylamino)-N-methylstilbazolium] p-tosylate), DSTMS (4-N,N-dimethylamino-4’-N’-methylstilbazolium 2,4,6-trimethylbenzenesulfonate), and the recently discovered generator PNPA ((E)-4-((4-nitrobenzylidene)amino)-N-phenylaniline). All three of these crystals outperform the beta-barium borate (BBO), an inorganic material commonly used for SHG, using IR pump wavelengths (1200–2000 nm).

     
    more » « less