skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Directed evolution of Zymomonas mobilis sugar facilitator Glf to overcome glucose inhibition
Abstract Cellular import of D-xylose, the second most abundant sugar in typical lignocellulosic biomass, has been evidenced to be an energy-depriving process in bacterial biocatalysts. The sugar facilitator of Zymomonas mobilis, Glf, is capable of importing xylose at high rates without extra energy input, but is inhibited by D-glucose (the primary biomass sugar), potentially limiting the utility of this transporter for fermentation of sugar mixtures derived from lignocellulose. In this work we developed an Escherichia coli platform strain deficient in glucose and xylose transport to facilitate directed evolution of Glf to overcome glucose inhibition. Using this platform, we isolated nine Glf variants created by both random and site-saturation mutagenesis with increased xylose utilization rates ranging from 4.8-fold to 13-fold relative to wild-type Glf when fermenting 100 g l–1 glucose–xylose mixtures. Diverse point mutations such as A165M and L445I were discovered leading to released glucose inhibition. Most of these mutations likely alter sugar coordinating pocket for the 6-hydroxymethyl group of D-glucose. These discovered glucose-resistant Glf variants can be potentially used as energy-conservative alternatives to the native sugar transport systems of bacterial biocatalysts for fermentation of lignocellulose-derived sugars.  more » « less
Award ID(s):
1942825
PAR ID:
10307186
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Industrial Microbiology and Biotechnology
ISSN:
1367-5435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efficient co‐utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose−xylose mixtures. This study focuses on enhancing phenylalanine production by engineeringEscherichia colito efficiently co‐utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose‐to‐glucose flux ratio. A mutant copy of the xylose‐specific activator (XylR) was then introduced into the phenylalanine‐overproducingE. coliNST74, which relieved carbon catabolite repression and enabled efficient glucose−xylose co‐utilization. Carbon contribution analysis through13C‐fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose−xylose mixture; a threefold increase over NST74. Then, using biomass‐derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9‐fold increase over NST74. Notably, and consistent with the carbon contribution analysis, thexylR*mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L‐h). This study presents a novel strategy for enhancing phenylalanine production through the co‐utilization of glucose and xylose in aerobicE. colicultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products. 
    more » « less
  2. Abstract In situdetoxification of lignocellulose-derived microbial inhibitory compounds is an economical strategy for the fermentation of lignocellulose-derived sugars to fuels and chemicals. In this study, we investigated homologous integration and constitutive expression ofCbei_3974 andCbei_3904, which encode aldo-keto reductase and previously annotated short chain dehydrogenase/reductase, respectively, inClostridium beijerinckiiNCIMB 8052 (Cb), resulting in two strains:Cb_3974 andCb_3904. Expression ofCbei_3974 led to 2-fold increase in furfural detoxification relative toCb_3904 andCb_wild type. Correspondingly, butanol production was up to 1.2-fold greater in furfural-challenged cultures ofCb_3974 relative toCb_3904 andCb_wild type. With 4-hydroxybezaldehyde and syringaldehyde supplementation,Cb_3974 showed up to 2.4-fold increase in butanol concentration when compared toCb_3904 andCb_wild type. Syringic and vanillic acids were considerably less deleterious to all three strains ofCbtested. Overall,Cb_3974 showed greater tolerance to furfural, 4-hydroxybezaldehyde, and syringaldehyde with improved capacity for butanol production. Hence, development ofCb_3974 represents a significant progress towards engineering solventogenicClostridiumspecies that are tolerant to lignocellulosic biomass hydrolysates as substrates for ABE fermentation. 
    more » « less
  3. Abstract BackgroundCost-effective production of biofuels from lignocellulose requires the fermentation ofd-xylose. Many yeast species within and closely related to the generaSpathasporaandScheffersomyces(both of the order Serinales) natively assimilate and ferment xylose. Other species consume xylose inefficiently, leading to extracellular accumulation of xylitol. Xylitol excretion is thought to be due to the different cofactor requirements of the first two steps of xylose metabolism. Xylose reductase (XR) generally uses NADPH to reduce xylose to xylitol, while xylitol dehydrogenase (XDH) generally uses NAD+to oxidize xylitol to xylulose, creating an imbalanced redox pathway. This imbalance is thought to be particularly consequential in hypoxic or anoxic environments. ResultsWe screened the growth of xylose-fermenting yeast species in high and moderate aeration and identified both ethanol producers and xylitol producers. Selected species were further characterized for their XR and XDH cofactor preferences by enzyme assays and gene expression patterns by RNA-Seq. Our data revealed that xylose metabolism is more redox balanced in some species, but it is strongly affected by oxygen levels. Under high aeration, most species switched from ethanol production to xylitol accumulation, despite the availability of ample oxygen to accept electrons from NADH. This switch was followed by decreases in enzyme activity and the expression of genes related to xylose metabolism, suggesting that bottlenecks in xylose fermentation are not always due to cofactor preferences. Finally, we expressedXYLgenes from multipleScheffersomycesspecies in a strain ofSaccharomyces cerevisiae. RecombinantS. cerevisiaeexpressingXYL1fromScheffersomyces xylosifermentans, which encodes an XR without a cofactor preference, showed improved anaerobic growth on xylose as the primary carbon source compared toS. cerevisiaestrain expressingXYLgenes fromScheffersomyces stipitis. ConclusionCollectively, our data do not support the hypothesis that xylitol accumulation occurs primarily due to differences in cofactor preferences between xylose reductase and xylitol dehydrogenase; instead, gene expression plays a major role in response to oxygen levels. We have also identified the yeastSc. xylosifermentansas a potential source for genes that can be engineered intoS. cerevisiaeto improve xylose fermentation and biofuel production. 
    more » « less
  4. Background Cellulolytic, hemicellulolytic, and amylolytic (CHA) enzyme-producing halophiles are understudied. The recently defined taxon Iocasia fonsfrigidae consists of one well-described anaerobic bacterial strain: NS-1 T . Prior to characterization of strain NS-1 T , an isolate designated Halocella sp. SP3-1 was isolated and its genome was published. Based on physiological and genetic comparisons, it was suggested that Halocella sp. SP3-1 may be another isolate of I. fronsfrigidae . Despite being geographic variants of the same species, data indicate that strain SP3-1 exhibits genetic, genomic, and physiological characteristics that distinguish it from strain NS-1 T . In this study, we examine the halophilic and alkaliphilic nature of strain SP3-1 and the genetic substrates underlying phenotypic differences between strains SP3-1 and NS-1 T with focus on sugar metabolism and CHA enzyme expression. Methods Standard methods in anaerobic cell culture were used to grow strains SP3-1 as well as other comparator species. Morphological characterization was done via electron microscopy and Schaeffer-Fulton staining. Data for sequence comparisons ( e.g. , 16S rRNA) were retrieved via BLAST and EzBioCloud. Alignments and phylogenetic trees were generated via CLUTAL_X and neighbor joining functions in MEGA (version 11). Genomes were assembled/annotated via the Prokka annotation pipeline. Clusters of Orthologous Groups (COGs) were defined by eegNOG 4.5. DNA-DNA hybridization calculations were performed by the ANI Calculator web service. Results Cells of strain SP3-1 are rods. SP3-1 cells grow at NaCl concentrations of 5-30% (w/v). Optimal growth occurs at 37 °C, pH 8.0, and 20% NaCl (w/v). Although phylogenetic analysis based on 16S rRNA gene indicates that strain SP3-1 belongs to the genus Iocasia with 99.58% average nucleotide sequence identity to Iocasia fonsfrigida NS-1 T , strain SP3-1 is uniquely an extreme haloalkaliphile. Moreover, strain SP3-1 ferments D-glucose to acetate, butyrate, carbon dioxide, hydrogen, ethanol, and butanol and will grow on L-arabinose, D-fructose, D-galactose, D-glucose, D-mannose, D-raffinose, D-xylose, cellobiose, lactose, maltose, sucrose, starch, xylan and phosphoric acid swollen cellulose (PASC). D-rhamnose, alginate, and lignin do not serve as suitable culture substrates for strain SP3-1. Thus, the carbon utilization profile of strain SP3-1 differs from that of I. fronsfrigidae strain NS-1 T . Differences between these two strains are also noted in their lipid composition. Genomic data reveal key differences between the genetic profiles of strain SP3-1 and NS-1 T that likely account for differences in morphology, sugar metabolism, and CHA-enzyme potential. Important to this study, I. fonsfrigidae SP3-1 produces and extracellularly secretes CHA enzymes at different levels and composition than type strain NS-1 T . The high salt tolerance and pH range of SP3-1 makes it an ideal candidate for salt and pH tolerant enzyme discovery. 
    more » « less
  5. Carbohydrate derived low molecular weight organogelators are interesting compounds with many potential applications. Selective functionalization of the different hydroxyl substituents on d -glucose and d -glucosamine resulted in small molecular gelators. Previously we have found that the C-2 acylated derivatives including esters and carbamates of 4,6- O -benzylidene protected glucose and glucosamine derivatives have shown remarkable applications as molecular gelators. In this research, in order to probe the structural influence of sugar derivatives on molecular self-assembly, we introduced acylation functional groups to the 3-hydroxyl group of 4,6- O -benzylidene acetal protected N -acetyl glucosamine derivatives. A library of fourteen ester derivatives was synthesized and characterized. The ester derivatives typically formed gels in pump oil and aqueous mixtures of dimethyl sulfoxide or ethanol. The resulting gels were characterized using optical microscopy, and rheology, etc. All alkyl ester derivatives were gelators for pump oil. A short chain ester derivative was able to form gels in a few different oils and the corresponding oil water mixtures phase selectively. The compound was also used to trap naproxen sodium and formed a stable co-gel. The controlled release of the drug from the gel to the aqueous phase was analyzed using UV-vis spectroscopy. These results show that the functionalization at the 3-OH position of the N -acetyl glucosamine derivative is a feasible strategy in designing new classes of organogelators. 
    more » « less