skip to main content


Title: Conductive mixed-order generalized dispersion model for noble metals in the optical regime

Various dispersion models can be expressed as special cases of the Generalized Dispersion Model (GDM), which is composed of a series of Padé polynomials. While important for its broad applicability, we found that some materials with Drude dispersive terms can be accurately modeled by mixing a 1storder Padé polynomial with an extra conductivity term. This conductivity term can be separated from the auxiliary differential equation (ADE). Therefore, the proposed mixed-order model can achieve the same accuracy with fewer unknowns, thus realizing higher computational efficiency and lower memory consumption. For examples, we derive the model parameters and corresponding numerical errors for noble metals including Au, Ag, and Al in the optical regime. Finally, the proposed model’s efficiency improvements are validated through implementation within a Discontinuous Galerkin Time Domain (DGTD) framework. The proposed model can achieve up to 12.5% efficiency improvement in theory compared to the conventional GDM with the same accuracy. A numerical example validates that, in practice, 9% memory reduction and 11% acceleration can be realized.

 
more » « less
NSF-PAR ID:
10307244
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
19
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 30520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Planar photonics technology is expected to facilitate new physics and enhanced functionality for a new generation of disruptive optical devices. To analyze such planar optical metasurfaces efficiently, we propose a prismatic discontinuous Galerkin time domain (DGTD) method with a generalized dispersive material (GDM) model to conduct the full-wave electromagnetic simulation of planar photonic nanostructures. Prism-based DGTD allows for triangular prismatic space discretization, which is optimal for planar geometries. In order to achieve an accurate universal model for arbitrary dispersive materials, the GDM model is integrated within the prism-based DGTD. As an advantage of prismatic spatial discretization, the prism-based DGTD with GDM has fewer elements than conventional tetrahedral methods, which in turn brings higher computational efficiency. Finally, the accuracy, convergence behavior, and efficiency improvements of the proposed algorithm is validated by several numerical examples. A simulation toolkit with the proposed algorithm has been released online, enabling users to efficiently analyze metasurfaces with customized pixel patterns.

     
    more » « less
  2. The YBJ equation (Young & Ben Jelloul, J. Marine Res. , vol. 55, 1997, pp. 735–766) provides a phase-averaged description of the propagation of near-inertial waves (NIWs) through a geostrophic flow. YBJ is obtained via an asymptotic expansion based on the limit $\mathit{Bu}\rightarrow 0$ , where $\mathit{Bu}$ is the Burger number of the NIWs. Here we develop an improved version, the YBJ + equation. In common with an earlier improvement proposed by Thomas, Smith & Bühler ( J. Fluid Mech. , vol. 817, 2017, pp. 406–438), YBJ + has a dispersion relation that is second-order accurate in $\mathit{Bu}$ . (YBJ is first-order accurate.) Thus both improvements have the same formal justification. But the dispersion relation of YBJ + is a Padé approximant to the exact dispersion relation and with $\mathit{Bu}$ of order unity this is significantly more accurate than the power-series approximation of Thomas et al. (2017). Moreover, in the limit of high horizontal wavenumber $k\rightarrow \infty$ , the wave frequency of YBJ + asymptotes to twice the inertial frequency $2f$ . This enables solution of YBJ + with explicit time-stepping schemes using a time step determined by stable integration of oscillations with frequency $2f$ . Other phase-averaged equations have dispersion relations with frequency increasing as $k^{2}$ (YBJ) or $k^{4}$ (Thomas et al. 2017): in these cases stable integration with an explicit scheme becomes impractical with increasing horizontal resolution. The YBJ + equation is tested by comparing its numerical solutions with those of the Boussinesq and YBJ equations. In virtually all cases, YBJ + is more accurate than YBJ. The error, however, does not go rapidly to zero as the Burger number characterizing the initial condition is reduced: advection and refraction by geostrophic eddies reduces in the initial length scale of NIWs so that $\mathit{Bu}$ increases with time. This increase, if unchecked, would destroy the approximation. We show, however, that dispersion limits the damage by confining most of the wave energy to low  $\mathit{Bu}$ . In other words, advection and refraction by geostrophic flows does not result in a strong transfer of initially near-inertial energy out of the near-inertial frequency band. 
    more » « less
  3. ABSTRACT

    This paper presents high-order Runge–Kutta (RK) discontinuous Galerkin methods for the Euler–Poisson equations in spherical symmetry. The scheme can preserve a general polytropic equilibrium state and achieve total energy conservation up to machine precision with carefully designed spatial and temporal discretizations. To achieve the well-balanced property, the numerical solutions are decomposed into equilibrium and fluctuation components that are treated differently in the source term approximation. One non-trivial challenge encountered in the procedure is the complexity of the equilibrium state, which is governed by the Lane–Emden equation. For total energy conservation, we present second- and third-order RK time discretization, where different source term approximations are introduced in each stage of the RK method to ensure the conservation of total energy. A carefully designed slope limiter for spherical symmetry is also introduced to eliminate oscillations near discontinuities while maintaining the well-balanced and total-energy-conserving properties. Extensive numerical examples – including a toy model of stellar core collapse with a phenomenological equation of state that results in core bounce and shock formation – are provided to demonstrate the desired properties of the proposed methods, including the well-balanced property, high-order accuracy, shock-capturing capability, and total energy conservation.

     
    more » « less
  4. Abstract

    Scenario development in tokamaks is an open area of investigation that can be approached in a variety of different ways. Experimental trial and error has been the traditional method, but this required a massive amount of experimental time and resources. As high fidelity predictive models have become available, offline development and testing of proposed scenarios has become an option to reduce the required experimental resources. The use of predictive models also offers the possibility of using a numerical optimization process to find the controllable inputs that most closely achieve the desired plasma state. However, this type of optimization can require as many as hundreds or thousands of predictive simulation cases to converge to a solution; many of the commonly used high fidelity models have high computational burdens, so it is only reasonable to run a handful of predictive simulations. In order to make use of numerical optimization approaches, a compromise needs to be found between model fidelity and computational burden. This compromise can be achieved using neural networks surrogates of high fidelity models that retain nearly the same level of accuracy as the models they are trained to replicate while reducing the computation time by orders of magnitude. In this work, a model-based numerical optimization tool for scenario development is described. The predictive model used by the optimizer includes neural network surrogate models integrated into the fast Control-Oriented Transport simulation framework. This optimization scheme is able to converge to the optimal values of the controllable inputs that produce the target plasma scenario by running thousands of predictive simulations in under an hour without sacrificing too much prediction accuracy.

     
    more » « less
  5. Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracy loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods. 
    more » « less