skip to main content

Title: Biological growth and synthetic fabrication of structurally colored materials
Abstract

Nature’s light manipulation strategies—in particular those at the origin of bright iridescent colors—have fascinated humans for centuries. In recent decades, insights into the fundamental concepts and physics underlying biological light-matter interactions have enabled a cascade of attempts to copy nature’s optical strategies in synthetic structurally colored materials. However, despite rapid advances in bioinspired materials that emulate and exceed nature’s light manipulation abilities, we tend to create these materials via methods that have little in common with the processes used by biology. In this review, we compare the processes that enable the formation of biological photonic structures with the procedures employed by scientists and engineers to fabricate biologically inspired photonic materials. This comparison allows us to reflect upon the broader strategies employed in synthetic processes and to identify biological strategies which, if incorporated into the human palette of fabrication approaches, could significantly advance our abilities to control material structure in three dimensions across all relevant length scales.

Authors:
; ; ;
Publication Date:
NSF-PAR ID:
10307259
Journal Name:
Journal of Optics
Volume:
21
Issue:
7
Page Range or eLocation-ID:
Article No. 073001
ISSN:
2040-8978
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological systems have a remarkable capability of synthesizing multifunctional materials that are adapted for specific physiological and ecological needs. When exploring structure–function relationships related to multifunctionality in nature, it can be a challenging task to address performance synergies, trade-offs, and the relative importance of different functions in biological materials, which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counterparts. Here, we investigate such relationships between the mechanical and optical properties in a multifunctional biological material found in the highly protective yet conspicuously colored exoskeleton of the flower beetle, Torynorrhina flammea . Combining experimental, computational, and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in the beetle’s exoskeleton simultaneously enhances mechanical robustness and optical appearance, giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer vertical micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and enhance delamination resistance. The micropillars also scatter the reflected light at larger polar angles, enhancing the first optical diffraction order, which makes the reflected color visible from a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and damage localization capability contributes to the optical damage tolerance. Our systematic structural analysismore »of T. flammea ’s different color polymorphs and parametric optical and mechanical modeling further suggest that the beetle’s microarchitecture is optimized toward maximizing the first-order optical diffraction rather than its mechanical stiffness. These findings shed light on material-level design strategies utilized in biological systems for achieving multifunctionality and could thus inform bioinspired material innovations.« less
  2. Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications.
  3. Abstract

    In this work, we introduce a roll-to-roll system that can continuously print three-dimensional (3D) periodic nanostructures over large areas. This approach is based on Langmuir-Blodgett assembly of colloidal nanospheres, which diffract normal incident light to create a complex intensity pattern for near-field nanolithography. The geometry of the 3D nanostructure is defined by the Talbot effect and can be precisely designed by tuning the ratio of the nanosphere diameter to the exposure wavelength. Using this system, we have demonstrated patterning of 3D photonic crystals with a 500 nm period on a 50 × 200 mm2flexible substrate, with a system throughput of 3 mm/s. The patterning yield is quantitatively analyzed by an automated electron beam inspection method, demonstrating long-term repeatability of an up to 88% yield over a 4-month period. The inspection method can also be employed to examine pattern uniformity, achieving an average yield of up to 78.6% over full substrate areas. The proposed patterning method is highly versatile and scalable as a nanomanufacturing platform and can find application in nanophotonics, nanoarchitected materials, and multifunctional nanostructures.

  4. Abstract The exponential growth of information stored in data centers and computational power required for various data-intensive applications, such as deep learning and AI, call for new strategies to improve or move beyond the traditional von Neumann architecture. Recent achievements in information storage and computation in the optical domain, enabling energy-efficient, fast, and high-bandwidth data processing, show great potential for photonics to overcome the von Neumann bottleneck and reduce the energy wasted to Joule heating. Optically readable memories are fundamental in this process, and while light-based storage has traditionally (and commercially) employed free-space optics, recent developments in photonic integrated circuits (PICs) and optical nano-materials have opened the doors to new opportunities on-chip. Photonic memories have yet to rival their electronic digital counterparts in storage density; however, their inherent analog nature and ultrahigh bandwidth make them ideal for unconventional computing strategies. Here, we review emerging nanophotonic devices that possess memory capabilities by elaborating on their tunable mechanisms and evaluating them in terms of scalability and device performance. Moreover, we discuss the progress on large-scale architectures for photonic memory arrays and optical computing primarily based on memory performance.
  5. Abstract

    Bound states in the continuum (BICs) are widely studied for their ability to confine light, produce sharp resonances for sensing applications and serve as avenues for lasing action with topological characteristics. Primarily, the formation of BICs in periodic photonic band gap structures are driven by symmetry incompatibility; structural manipulation or variation of incidence angle from incoming light. In this work, we report two modalities for driving the formation of BICs in terahertz metasurfaces. At normal incidence, we experimentally confirm polarization driven symmetry-protected BICs by the variation of the linear polarization state of light. In addition, we demonstrate through strong coupling of two radiative modes the formation of capacitively-driven Freidrich-Wintgen BICs, exotic modes which occur in off-Γpoints not accessible by symmetry-protected BICs. The capacitance-mediated strong coupling at 0° polarization is verified to have a normalized coupling strength ratio of 4.17% obtained by the Jaynes-Cummings model. Furthermore, when the polarization angle is varied from 0° to 90° (0° ≤ϕ < 90°), the Freidrich-Wintgen BIC is modulated until it is completely switched off at 90°.