skip to main content


Title: High royal jelly production does not impact the gut microbiome of honey bees
Abstract Background

Honey bees are not only essential for pollination services, but are also economically important as a source of hive products (e.g., honey, royal jelly, pollen, wax, and propolis) that are used as foods, cosmetics, and alternative medicines. Royal jelly is a popular honey bee product with multiple potential medicinal properties. To boost royal jelly production, a long-term genetic selection program of Italian honey bees (ITBs) in China has been performed, resulting in honey bee stocks (here referred to as RJBs) that produce an order of magnitude more royal jelly than ITBs. Although multiple studies have investigated the molecular basis of increased royal jelly yields, one factor that has not been considered is the role of honey bee-associated gut microbes.

Results

Based on the behavioral, morphological, physiological, and neurological differences between RJBs and ITBs, we predicted that the gut microbiome composition of RJBs bees would differ from ITBs. To test this hypothesis, we investigated the bacterial composition of RJB and ITB workers from an urban location and RJBs from a rural location in China. Based on 16S rRNA gene profiling, we did not find any evidence that RJBs possess a unique bacterial gut community when compared to ITBs. However, we observed differences between honey bees from the urban versus rural sites.

Conclusions

Our results suggest that the environmental factors rather than stock differences are more important in shaping the bacterial composition in honey bee guts. Further studies are needed to investigate if the observed differences in relative abundance of taxa between the urban and rural bees correspond to distinct functional capabilities that impact honey bee health. Because the lifestyle, diet, and other environmental variables are different in rural and urban areas, controlled studies are needed to determine which of these factors are responsible for the observed differences in gut bacterial composition between urban and rural honeybees.

 
more » « less
Award ID(s):
1930776
NSF-PAR ID:
10307276
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Animal Microbiome
Volume:
3
Issue:
1
ISSN:
2524-4671
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Daniel, Sloan (Ed.)
    Abstract Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture’s most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism. 
    more » « less
  2. Campbell, Barbara J. (Ed.)
    ABSTRACT Host-associated microbiomes can be critical for the health and proper development of animals and plants. The answers to many fundamental questions regarding the modes of acquisition and microevolution of microbiome communities remain to be established. Deciphering strain-level dynamics is essential to fully understand how microbial communities evolve, but the forces shaping the strain-level dynamics of microbial communities remain largely unexplored, mostly because of methodological issues and cost. Here, we used targeted strain-level deep sequencing to uncover the strain dynamics within a host-associated microbial community using the honey bee gut microbiome as a model system. Our results revealed that amplicon sequencing of conserved protein-coding gene regions using species-specific primers is a cost-effective and accurate method for exploring strain-level diversity. In fact, using this method we were able to confirm strain-level results that have been obtained from whole-genome shotgun sequencing of the honey bee gut microbiome but with a much higher resolution. Importantly, our deep sequencing approach allowed us to explore the impact of low-frequency strains (i.e., cryptic strains) on microbiome dynamics. Results show that cryptic strain diversity is not responsible for the observed variations in microbiome composition across bees. Altogether, the findings revealed new fundamental insights regarding strain dynamics of host-associated microbiomes. IMPORTANCE The factors driving fine-scale composition and dynamics of gut microbial communities are poorly understood. In this study, we used metagenomic amplicon deep sequencing to decipher the strain dynamics of two key members of the honey bee gut microbiome. Using this high-throughput and cost-effective approach, we were able to confirm results from previous large-scale whole-genome shotgun (WGS) metagenomic sequencing studies while also gaining additional insights into the community dynamics of two core members of the honey bee gut microbiome. Moreover, we were able to show that cryptic strains are not responsible for the observed variations in microbiome composition across bees. 
    more » « less
  3. Gambino, Michela (Ed.)
    ABSTRACT The microbial communities in animal digestive systems are critical for host development and health. They stimulate the immune system during development, synthesize important chemical compounds like hormones, aid in digestion, competitively exclude pathogens, etc. Compared to the bacterial and fungal components of the microbiome, we know little about the temporal and spatial dynamics of bacteriophage communities in animal digestive systems. Recently, the bacteriophages of the honey bee gut were characterized in two European bee populations. Most of the bacteriophages described in these two reports were novel, harbored many metabolic genes in their genomes, and had a community structure that suggests coevolution with their bacterial hosts. To describe the conservation of bacteriophages in bees and begin to understand their role in the bee microbiome, we sequenced the virome of Apis mellifera from Austin, TX, and compared bacteriophage compositions among three locations around the world. We found that most bacteriophages from Austin are novel, sharing no sequence similarity with anything in public repositories. However, many bacteriophages are shared among the three bee viromes, indicating specialization of bacteriophages in the bee gut. Our study, along with the two previous bee virome studies, shows that the bee gut bacteriophage community is simple compared to that of many animals, consisting of several hundred types of bacteriophages that primarily infect four of the dominant bacterial phylotypes in the bee gut. IMPORTANCE Viruses that infect bacteria (bacteriophages) are abundant in the microbial communities that live on and in plants and animals. However, our knowledge of the structure, dynamics, and function of these viral communities lags far behind our knowledge of their bacterial hosts. We sequenced the first bacteriophage community of honey bees from the United States and compared the U.S. honey bee bacteriophage community to those of samples from Europe. Our work is an important characterization of an economically critical insect species and shows how bacteriophage communities can contain highly conserved individuals and be highly variable in composition across a wide geographic range. 
    more » « less
  4. Females of the Northern house mosquito, Culex pipiens, enter an overwintering dormancy, or diapause, in response to short day lengths and low environmental temperatures. Diapausing female mosquitoes feed exclusively on sugar-rich products rather than human or animal blood, thereby reducing disease transmission. During diapause, Major Royal Jelly Protein 1 (MRJP1) is upregulated in females of Cx. pipiens. This protein is highly abundant in royal jelly, a substance produced by honey bees (Apis mellifera), that is fed to future queens throughout larval development and stimulates longevity and fecundity. However, the role of MRJP1 in Cx. pipiens is unknown. We investigated how supplementing the diets of both diapausing and nondiapausing females of Cx. pipiens with royal jelly affects gene expression, egg follicle length, fat content, protein content, longevity, and metabolic profile. We found that feeding royal jelly to long day-reared females significantly reduced the egg follicle lengths of females and switched their metabolic profiles to be similar to diapausing females. In contrast, feeding royal jelly to short day-reared females significantly reduced lifespan and switched their metabolic profile to be similar nondiapausing mosquitoes. Moreover, RNAi directed against MRJPI significantly increased egg follicle length of short day-reared females, suggesting that these females averted diapause, although RNAi against MRJP1 also extended the lifespan of short day-reared females. Taken together, our data show that consuming royal jelly reverses the seasonal responses of Cx. pipiens and that these responses are likely mediated in part by MRJP1. 
    more » « less
  5. ABSTRACT Microbial communities are shaped by interactions among their constituent members. Some Gram-negative bacteria employ type VI secretion systems (T6SSs) to inject protein toxins into neighboring cells. These interactions have been theorized to affect the composition of host-associated microbiomes, but the role of T6SSs in the evolution of gut communities is not well understood. We report the discovery of two T6SSs and numerous T6SS-associated Rhs toxins within the gut bacteria of honey bees and bumble bees. We sequenced the genomes of 28 strains of Snodgrassella alvi , a characteristic bee gut microbe, and found tremendous variability in their Rhs toxin complements: altogether, these strains appear to encode hundreds of unique toxins. Some toxins are shared with Gilliamella apicola , a coresident gut symbiont, implicating horizontal gene transfer as a source of toxin diversity in the bee gut. We use data from a transposon mutagenesis screen to identify toxins with antibacterial function in the bee gut and validate the function and specificity of a subset of these toxin and immunity genes in Escherichia coli . Using transcriptome sequencing, we demonstrate that S. alvi T6SSs and associated toxins are upregulated in the gut environment. We find that S. alvi Rhs loci have a conserved architecture, consistent with the C-terminal displacement model of toxin diversification, with Rhs toxins, toxin fragments, and cognate immunity genes that are expressed and confer strong fitness effects in vivo . Our findings of T6SS activity and Rhs toxin diversity suggest that T6SS-mediated competition may be an important driver of coevolution within the bee gut microbiota. IMPORTANCE The structure and composition of host-associated bacterial communities are of broad interest, because these communities affect host health. Bees have a simple, conserved gut microbiota, which provides an opportunity to explore interactions between species that have coevolved within their host over millions of years. This study examined the role of type VI secretion systems (T6SSs)—protein complexes used to deliver toxic proteins into bacterial competitors—within the bee gut microbiota. We identified two T6SSs and diverse T6SS-associated toxins in bacterial strains from bees. Expression of these genes is increased in bacteria in the bee gut, and toxin and immunity genes demonstrate antibacterial and protective functions, respectively, when expressed in Escherichia coli . Our results suggest that coevolution among bacterial species in the bee gut has favored toxin diversification and maintenance of T6SS machinery, and demonstrate the importance of antagonistic interactions within host-associated microbial communities. 
    more » « less