skip to main content

Title: Market forces determine the distribution of a leaky function in a simple microbial community

Many biological functions are leaky, and organisms that perform them contribute some of their products to a community “marketplace” in which nonperforming individuals may compete for them. Leaky functions are partitioned unequally in microbial communities, and the evolutionary forces determining which species perform them and which become beneficiaries are poorly understood. Here, we demonstrate that the market principle of comparative advantage determines the distribution of a leaky antibiotic resistance gene in an environment occupied by two “species”—strains ofEscherichia coligrowing on mutually exclusive resources and thus occupying separate niches. Communities comprised of antibiotic-resistant cells were rapidly invaded by sensitive cells of both types. While the two phenotypes coexisted stably for 500 generations, in 15/18 replicates, antibiotic sensitivity became fixed in one species. Fixation always occurred in the same species despite both species being genetically identical except for their niche-defining mutation. In the absence of antibiotic, the fitness cost of resistance was identical in both species. However, the intrinsic resistance of the species that ultimately became the sole helper was significantly lower, and thus its reward for expressing the resistance gene was higher. Opportunity cost of resistance, not absolute cost or efficiency of antibiotic removal, determined which species became the helper, consistent more » with the economic theory of comparative advantage. We present a model that suggests that this market-like dynamic is a general property of Black Queen systems and, in communities dependent on multiple leaky functions, could lead to the spontaneous development of an equitable and efficient division of labor.

« less
; ; ; ;
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
Article No. e2109813118
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plants deploy both primary and species-specific, specialized metabolites to communicate with other organisms and adapt to environmental challenges, including interactions with soil-dwelling microbial communities. However, the role of specialized metabolites in modulating plant-microbiome interactions often remains elusive. In this study, we report that maize (Zea mays) diterpenoid metabolites with known antifungal bioactivities also influence rhizosphere bacterial communities. Metabolite profiling showed that dolabralexins, antibiotic diterpenoids that are highly abundant in roots of some maize varieties, can be exuded from the roots. Comparative 16S rRNA gene sequencing determined the bacterial community composition of the maize mutantZman2(anther ear 2), which is deficient in dolabralexins and closely related bioactive kauralexin diterpenoids. TheZman2rhizosphere microbiome differed significantly from the wild-type sibling with the most significant changes observed for Alphaproteobacteria of the order Sphingomonadales. Metabolomics analyses support that these differences are attributed to the diterpenoid deficiency of theZman2mutant, rather than other large-scale metabolome alterations. Together, these findings support physiological functions of maize diterpenoids beyond known chemical defenses, including the assembly of the rhizosphere microbiome.

  2. Host–parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple cropSorghum bicolor(L.) Moench and its association with the parasitic weedStriga hermonthica(Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghumLOW GERMINATION STIMULANT 1 (LGS1)are broadly distributed among African landraces and geographically associated withS. hermonthicaoccurrence. However, low frequency of these alleles withinS. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation.LGS1is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surroundingLGS1and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR–Cas9-edited sorghum further indicate that the benefit ofLGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comesmore »at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.

    « less
  3. Antibiotic resistance is a growing concern that has prompted a renewed focus on drug discovery, stewardship, and evolutionary studies of the patterns and processes that underlie this phenomenon. A resistant strain’s competitive fitness relative to its sensitive counterparts in the absence of drug can impact its spread and persistence in both clinical and community settings. In a prior study, we examined the fitness of tetracycline-resistant clones that evolved from five different Escherichia coli genotypes, which had diverged during a long-term evolution experiment. In this study, we build on that work to examine whether ampicillin-resistant mutants are also less fit in the absence of the drug than their sensitive parents, and whether the cost of resistance is constant or variable among independently derived lines. Like the tetracycline-resistant lines, the ampicillin-resistant mutants were often less fit than their sensitive parents, with significant variation in the fitness costs among the mutants. This variation was not associated with the level of resistance conferred by the mutations, nor did it vary across the different parental backgrounds. In our earlier study, some of the variation in fitness costs associated with tetracycline resistance was explained by the effects of different mutations affecting the same cellular pathway andmore »even the same gene. In contrast, the variance among the ampicillin-resistant mutants was associated with different sets of target genes. About half of the resistant clones suffered large fitness deficits, and their mutations impacted major outer-membrane proteins or subunits of RNA polymerases. The other mutants experienced little or no fitness costs and with, one exception, they had mutations affecting other genes and functions. Our findings underscore the importance of comparative studies on the evolution of antibiotic resistance, and they highlight the nuanced processes that shape these phenotypes.« less
  4. Abstract

    Since antibiotic development lags, we search for potential drug targets through directed evolution experiments. A challenge is that many resistance genes hide in a noisy mutational background as mutator clones emerge in the adaptive population. Here, to overcome this noise, we quantify the impact of mutations through evolutionary action (EA). After sequencing ciprofloxacin or colistin resistance strains grown under different mutational regimes, we find that an elevated sum of the evolutionary action of mutations in a gene identifies known resistance drivers. This EA integration approach also suggests new antibiotic resistance genes which are then shown to provide a fitness advantage in competition experiments. Moreover, EA integration analysis of clinical and environmental isolates of antibiotic resistant ofE. coliidentifies gene drivers of resistance where a standard approach fails. Together these results inform the genetic basis of de novo colistin resistance and support the robust discovery of phenotype-driving genes via the evolutionary action of genetic perturbations in fitness landscapes.

  5. In theAllonemobius sociuscomplex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes.Our recently diverged species generally lacked sequence variation. As a result,ω-based tests were only mildly successful. Some of our genes showed evidence of elevatedωvalues on the internal branches of gene trees. In a couple genes these internal branches coincided with both species branching events of the species tree, betweenA. fasciatusand the other two species, and betweenA. sociusandA. sp. nov.Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses wasarginine kinase(AK) andapolipoprotein A-1 binding protein(APBP). These genes represent two of the firstmore »examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.

    « less