skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Stochastically modeling the projected impacts of climate change on rainfed and irrigated US crop yields
Abstract

Food demands are rising due to an increasing population with changing food preferences, placing pressure on agricultural production. Additionally, climate extremes have recently highlighted the vulnerability of the agricultural system to climate variability. This study seeks to fill two important gaps in current knowledge: how irrigation impacts the large-scale response of crops to varying climate conditions and how we can explicitly account for uncertainty in yield response to climate. To address these, we developed a statistical model to quantitatively estimate historical and future impacts of climate change and irrigation on US county-level crop yields with uncertainty explicitly treated. Historical climate and crop yield data for 1970–2009 were used over different growing regions to fit the model, and five CMIP5 climate projections were applied to simulate future crop yield response to climate. Maize and spring wheat yields are projected to experience decreasing trends with all models in agreement. Winter wheat yields in the Northwest will see an increasing trend. Results for soybean and winter wheat in the South are more complicated, as irrigation can change the trend in projected yields. The comparison between projected crop yield time series for rainfed and irrigated cases indicates that irrigation can buffer against climate variability that could lead to negative yield anomalies. Through trend analysis of the predictors, the trend in crop yield is mainly driven by projected trends in temperature-related indices, and county-level trend analysis shows regional differences are negligible. This framework provides estimates of the impact of climate and irrigation on US crop yields for the 21st century that account for the full uncertainty of climate variables and the range of crop response. The results of this study can contribute to decision making about crop choice and water use in an uncertain future climate.

 
more » « less
NSF-PAR ID:
10307536
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
14
Issue:
7
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 074021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Groundwater extraction in the United States (US) is unsustainable, making it essential to understand the impacts of limited water use on irrigated agriculture. To improve this understanding, we integrated a gridded crop model with satellite observations, recharge estimates, and water survey data to assess the effects of sustainable groundwater withdrawals on US irrigated agricultural production. The gridded crop model agrees with satellite‐based estimates of evapotranspiration (R2 = 0.68), as well as survey data from the United States Department of Agriculture (R2 = 0.82–0.94 for county‐level production and 0.37–0.54 for county‐level yield). Using the optimistic assumption that groundwater extraction equals effective aquifer recharge rate, we find that sustainable groundwater use decreases US irrigated production of maize, soybean, and winter wheat by 20%, 6%, and 25%, respectively. Using a more conservative assumption of groundwater availability, US irrigated production of maize, soybean, and winter wheat decreases by 45%, 37%, and 36%, respectively. The wide range of simulated losses is driven by considerable uncertainty in surface water and groundwater interactions, as well as accounting for the many aspects of sustainability. Our results demonstrate the vulnerability of US irrigated agriculture to unsustainable groundwater pumping, highlighting the difficulty of expanding or even maintaining irrigated food production in the face of climate change, population growth, and shifting dietary demands. These findings are based on reducing pumping by fallowing irrigated farmland; however, alternate pumping reduction strategies or technological advances in crop genetics and irrigation could produce different results.

     
    more » « less
  2. The possible influence of global climate changes on agricultural production is becoming increasingly significant, necessitating greater attention to improving agricultural production in response to temperature rises and precipitation variability. As one of the main winter wheat-producing areas in China, the temporal and spatial distribution characteristics of precipitation, accumulated temperature, and actual yield and climatic yield of winter wheat during the growing period in Shanxi Province were analysed in detail. With the utilisation of daily meteorological data collected from 12 meteorological stations in Shanxi Province in 1964–2018, our study analysed the change in winter wheat yield with climate change using GIS combined with wavelet analysis. The results show the following: (1) Accumulated temperature and precipitation are the two most important limiting factors among the main physical factors that impact yield. Based on the analysis of the ArcGIS geographical detector, the correlation between the actual yield of winter wheat and the precipitation during the growth period was the highest, reaching 0.469, and the meteorological yield and accumulated temperature during this period also reached its peak value of 0.376. (2) The regions with more suitable precipitation and accumulated temperature during the growth period of winter wheat in the study area had relatively high actual winter wheat yields. Overall, the average actual yield of the entire region showed a significant increasing trend over time, with an upward trend of 47.827 kg ha−1 yr−1. (3) The variation coefficient of winter wheat climatic yield was relatively stable in 2008–2018. In particular, there were many years of continuous reduction in winter wheat yields prior to 2006. Thereafter, the impact of climate change on winter wheat yields became smaller. This study expands our understanding of the complex interactions between climate variables and crop yield but also provides practical recommendations for enhancing agricultural practices in this region 
    more » « less
  3. Increases in the severity and frequency of drought in a warming climate may negatively impact agricultural production and food security. Unlike previous studies that have estimated agricultural impacts of climate condition using single-crop yield distributions, we develop a multivariate probabilistic model that uses projected climatic conditions (e.g., precipitation amount or soil moisture) throughout a growing season to estimate the probability distribution of crop yields. We demonstrate the model by an analysis of the historical period 1980–2012, including the Millennium Drought in Australia (2001–2009). We find that precipitation and soil moisture deficit in dry growing seasons reduced the average annual yield of the five largest crops in Australia (wheat, broad beans, canola, lupine, and barley) by 25–45% relative to the wet growing seasons. Our model can thus produce region- and crop-specific agricultural sensitivities to climate conditions and variability. Probabilistic estimates of yield may help decision-makers in government and business to quantitatively assess the vulnerability of agriculture to climate variations. We develop a multivariate probabilistic model that uses precipitation to estimate the probability distribution of crop yields. The proposed model shows how the probability distribution of crop yield changes in response to droughts. During Australia's Millennium Drought precipitation and soil moisture deficit reduced the average annual yield of the five largest crops. 
    more » « less
  4. Abstract

    Warming due to climate change has profound impacts on regional crop yields, and this includes impacts from rising mean growing season temperature and heat stress events. Adapting to these two impacts could be substantially different, and the overall contribution of these two factors on the effects of climate warming and crop yield is not known. This study used the improved WheatGrow model, which can reproduce the effects of temperature change and heat stress, along with detailed information from 19 location-specific cultivars and local agronomic management practices at 129 research stations across the main wheat-producing region of China, to quantify the regional impacts of temperature increase and heat stress separately on wheat in China. Historical climate, plus two future low-warming scenarios (1.5 °C/2.0 °C warming above pre-industrial) and one future high-warming scenario (RCP8.5), were applied using the crop model, without considering elevated CO2effects. The results showed that heat stress and its yield impact were more severe in the cooler northern sub-regions than the warmer southern sub-regions with historical and future warming scenarios. Heat stress was estimated to reduce wheat yield in most of northern sub-regions by 2.0%–4.0% (up to 29% in extreme years) under the historical climate. Climate warming is projected to increase heat stress events in frequency and extent, especially in northern sub-regions. Surprisingly, higher warming did not result in more yield-impacting heat stress compared to low-warming, due to advanced phenology with mean warming and finally avoiding heat stress events during grain filling in summer. Most negative impacts of climate warming are attributed to increasing mean growing-season temperature, while changes in heat stress are projected to reduce wheat yields by an additional 1.0%–1.5% in northern sub-regions. Adapting to climate change in China must consider the different regional and temperature impacts to be effective.

     
    more » « less
  5. Abstract

    Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate.

    Significance Statement

    Heatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts.

     
    more » « less