We present a strategy for constructing activatable photoacoustic imaging (PAI) probes for in vivo enzyme activity measurements, based on a dissociation strategy previously applied to in vitro sensing. Unlike conventional nanoparticle aggregation strategies, dissociation minimizes false positives and functions effectively in complex biological environments. Overcoming the challenge of dissociating nanostructure aggregates, which arises from the strong van der Waals forces at short distances, we demonstrate the controlled assembly and dissociation of citrate-capped gold nanorods (AuNRs-citrate) using a diarginine peptide additive and a thiolated polyethylene glycol (HS-PEG-OMe), respectively. This assembly dissociation mechanism enables precise control of the optical and photoacoustic (PA) properties of AuNRs in both in vitro and in vivo settings. Building on these findings, we engineered an enzyme-sensitive PAI probe (AuNRs@RgpB) composed of AuNR assemblies and a PEG-peptide conjugate with a protease-specific cleavage sequence. The probe detects Arg-specific gingipain (RgpB), a protease expressed by Porphyromonas gingivalis associated with periodontal disease and Alzheimer’s disease. Proteolytic cleavage of the peptide sequence triggers AuNR dissociation, resulting in enhanced PA signal output. The probe was designed to be injected intrathecally for preclinical trials to image gingipains and investigate the value of gingipain inhibitors developed for Alzheimer’s disease. The probe’s performance was characterized in vitro using UV−vis spectroscopy and PAI, achieving detection limits of 5 and 20 nM, respectively. In vivo studies involved intracranial injection of AuNRs@ RgpB into RgpB-containing murine models, with PA monitoring over time. RgpB activity produced a four-fold PA signal increase within 2 h, while P. gingivalis-infected mice showed similar signal enhancement. Specificity was confirmed by negligible responses to Fusobacterium nucleatum, a non-RgpB-producing bacterium. Additionally, the system demonstrated utility in drug development by successfully monitoring the inhibition of RgpB activity using RgpB inhibitors (leupeptin and KYT-1) in vivo models. Beyond its immediate application to RgpB detection, this modular approach to plasmonic-based sensing holds significant potential for detecting other proteases, advancing both nanotechnology and protease-targeted diagnostics. 
                        more » 
                        « less   
                    
                            
                            Activity-based photoacoustic probe for biopsy-free assessment of copper in murine models of Wilson’s disease and liver metastasis
                        
                    
    
            The development of high-performance photoacoustic (PA) probes that can monitor disease biomarkers in deep tissue has the potential to replace invasive medical procedures such as a biopsy. However, such probes must be optimized for in vivo performance and exhibit an exceptional safety profile. In this study, we have developed PACu-1, a PA probe designed for biopsy-free assessment (BFA) of hepatic Cu via photoacoustic imaging. PACu-1 features a Cu(I)-responsive trigger appended to an aza-BODIPY dye platform that has been optimized for ratiometric sensing. Owing to its excellent performance, we were able to detect basal levels of Cu in healthy wild-type mice as well as elevated Cu in a Wilson’s disease model and in a liver metastasis model. To showcase the potential impact of PACu-1 for BFA, we conducted two blind studies in which we were able to successfully identify Wilson’s disease animals from healthy control mice in each instance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1752879
- PAR ID:
- 10307840
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 118
- Issue:
- 36
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- Article No. e2106943118
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate‐specific membrane antigen (PSMA), which is over‐expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA− (PC3 flu) tumors through administration of the known PSMA‐targeted fluorescence agent, YC‐27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07‐fold with 5 mice at the 24‐hour postinjection time points. These results were corroborated using standard near‐infrared fluorescence imaging with YC‐27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMAin vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.more » « less
- 
            In retinal degenerative diseases, such as retinitis pigmentosa (RP) and age-related macular degeneration (AMD), the photoreceptors become stressed and start to degenerate in the early stages of the disease. Retinal prosthetic devices have been developed to restore vision in patients by applying electrical stimulation to the surviving retinal cells. However, these devices provide limited visual perception as the therapeutic interventions are generally considered in the later stages of the disease when only inner retinal layer cells are left. A potential treatment option for retinal degenerative diseases in the early stages can be stimulating bipolar cells, which receive presynaptic signals from photoreceptors. In this work, we constructed computational models of healthy and degenerated (both ON and OFF-type) cone bipolar cells (CBCs) with realistic morphologies extracted from connectomes of the healthy and early-stage degenerated rabbit retina. We examined these cells’ membrane potential and axon terminal calcium current differences when subjected to electrical stimulation. In addition, we investigated how differently healthy and degenerated cells behave with respect to various stimulation parameters, including pulse durationand cells’ distance from the stimulating electrode. The results suggested that regardless of the position of the OFF CBCs in the retina model, there is not a significant difference between the membrane potential of healthy and degenerate cells when electrically stimulated. However, the healthy ON CBC axon terminal membrane potential rising time-constant is shorter (0.29 ± 0.03 ms) than the degenerated cells (0.8 ± 0.07 ms). Moreover, the ionic calcium channels at the axon terminals of the cells have a higher concentration and higher current in degenerated cells (32.24 ± 6.12 pA) than the healthy cells (13.64 ± 2.88 pA) independently of the cell’s position.more » « less
- 
            Abstract A method for fabricating localized EC‐SERS probes based on nanopipettes and electrodeposition is described. Gold particles of fractal geometry with excellent SERS performance are produced, reliably and at low cost. By adapting the electrodeposition procedure, nanostructures of different sizes can be obtained, allowing the SERS platform to be tailored to many experimental configurations. In particular, by producing unique SERS platforms of dimensions comparable to the laser spot, quantitative comparison with electrochemical current is possible. By analyzing hundreds of samples, we thoroughly characterize the resulting geometry of the structures and their ability to enhance Raman signal, providing guidelines for the fabrication of optimized platforms. Control over the probes' surface potential also allows convenient modulation of surface‐analyte affinity and enable chemically unstable materials, such as Cu, to be reliably used. These are demonstrated by showing that Cu particles exposed to air can be easily re‐reduced, with no detriment in SERS performance.more » « less
- 
            Flavonoids are polyphenolic small molecules that are abundant in plant products and are largely recognized for their beneficial health effects. Possessing both antioxidant and prooxidant properties, flavonoids have complex behavior in biological systems. The presented work investigates the intersection between the biological activity of flavonoids and their interactions with copper ions. Copper is required for the proper functioning of biological systems. As such, dysregulation of copper is associated with metabolic disease states such as diabetes and Wilson’s disease. There is evidence that flavonoids bind copper ions, but the biological implications of their interactions remain unclear. Better understanding these interactions will provide insight into the mechanisms of flavonoids’ biological behavior and can inform potential therapeutic targets. We employed a variety of spectroscopic techniques to study flavonoid-Cu(II) binding and radical scavenging activities. We identified structural moieties important in flavonoid-copper interactions which relate to ring substitution but not the traditional structural subclassifications. The biological effects of the investigated flavonoids specifically on copper trafficking were assessed in knockout yeast models as well as in human hepatocytes. The copper modulating abilities of strong copper-binding flavonoids were largely influenced by the relative hydrophobicities. Combined, these spectroscopic and biological data help elucidate the intricate nature of flavonoids in affecting copper transport and open avenues to inform dietary recommendations and therapeutic development.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
