skip to main content


Title: DNA origami patterning of synthetic T cell receptors reveals spatial control of the sensitivity and kinetics of signal activation

Receptor clustering plays a key role in triggering cellular activation, but the relationship between the spatial configuration of clusters and the elicitation of downstream intracellular signals remains poorly understood. We developed a DNA-origami–based system that is easily adaptable to other cellular systems and enables rich interrogation of responses to a variety of spatially defined inputs. Using a chimeric antigen receptor (CAR) T cell model system with relevance to cancer therapy, we studied signaling dynamics at single-cell resolution. We found that the spatial arrangement of receptors determines the ligand density threshold for triggering and encodes the temporal kinetics of signaling activities. We also showed that signaling sensitivity of a small cluster of high-affinity ligands is enhanced when surrounded by nonstimulating low-affinity ligands. Our results suggest that cells measure spatial arrangements of ligands, translate that information into distinct signaling dynamics, and provide insights into engineering immunotherapies.

 
more » « less
NSF-PAR ID:
10307871
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
40
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2109057118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The interaction between TNFα and TNFR1 is essential in maintaining tissue development and immune responses. While TNFR1 is a cell surface receptor, TNFα exists in both soluble and membrane-bound forms. Interestingly, it was found that the activation of TNFR1-mediated signaling pathways is preferentially through the soluble form of TNFα, which can also induce the clustering of TNFR1 on plasma membrane of living cells. We developed a multiscale simulation framework to compare receptor clustering induced by soluble and membrane-bound ligands. Comparing with the freely diffusive soluble ligands, we hypothesize that the conformational dynamics of membrane-bound ligands are restricted, which affects the clustering of ligand-receptor complexes at cell-cell interfaces. Our simulation revealed that only small clusters can form if TNFα is bound on cell surface. In contrast, the clustering triggered by soluble TNFα is more dynamic, and the size of clusters is statistically larger. We therefore demonstrated the impact of membrane-bound ligand on dynamics of receptor clustering. Moreover, considering that larger TNFα-TNFR1 clusters is more likely to provide spatial platform for downstream signaling pathway, our studies offer new mechanistic insights about why the activation of TNFR1-mediated signaling pathways is not preferred by membrane-bound form of TNFα.

     
    more » « less
  2. Abstract

    The cytokine interleukin (IL)‐11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL‐11 variant that binds with higher affinity to the IL‐11 receptor and stimulates enhanced receptor‐mediated cell signaling. Introduction of two additional point mutations ablates IL‐11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high‐affinity receptor antagonist. Unlike wild‐type IL‐11, this engineered variant potently blocks IL‐11‐mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.

     
    more » « less
  3. The T cell receptor (TCR) initiates the elimination of pathogens and tumors by T cells. To avoid damage to the host, the receptor must be capable of discriminating between wild-type and mutated self and nonself peptide ligands presented by host cells. Exactly how the TCR does this is unknown. In resting T cells, the TCR is largely unphosphorylated due to the dominance of phosphatases over the kinases expressed at the cell surface. However, when agonist peptides are presented to the TCR by major histocompatibility complex proteins expressed by antigen-presenting cells (APCs), very fast receptor triggering, i.e., TCR phosphorylation, occurs. Recent work suggests that this depends on the local exclusion of the phosphatases from regions of contact of the T cells with the APCs. Here, we developed and tested a quantitative treatment of receptor triggering reliant only on TCR dwell time in phosphatase-depleted cell contacts constrained in area by cell topography. Using the model and experimentally derived parameters, we found that ligand discrimination likely depends crucially on individual contacts being ∼200 nm in radius, matching the dimensions of the surface protrusions used by T cells to interrogate their targets. The model not only correctly predicted the relative signaling potencies of known agonists and nonagonists but also achieved this in the absence of kinetic proofreading. Our work provides a simple, quantitative, and predictive molecular framework for understanding why TCR triggering is so selective and fast and reveals that, for some receptors, cell topography likely influences signaling outcomes. 
    more » « less
  4. SUMMARY

    Microbial and plant cell walls have been selected by the plant immune system as a source of microbe‐ and plant damage‐associated molecular patterns (MAMPs/DAMPs) that are perceived by extracellular ectodomains (ECDs) of plant pattern recognition receptors (PRRs) triggering immune responses. From the vast number of ligands that PRRs can bind, those composed of carbohydrate moieties are poorly studied, and only a handful of PRR/glycan pairs have been determined. Here we present a computational screening method, based on the first step of molecular dynamics simulation, that is able to predict putative ECD‐PRR/glycan interactions. This method has been developed and optimized with Arabidopsis LysM‐PRR members CERK1 and LYK4, which are involved in the perception of fungal MAMPs, chitohexaose (1,4‐β‐d‐(GlcNAc)6) and laminarihexaose (1,3‐β‐d‐(Glc)6). Ourin silicoresults predicted CERK1 interactions with 1,4‐β‐d‐(GlcNAc)6whilst discarding its direct binding by LYK4. In contrast, no direct interaction between CERK1/laminarihexaose was predicted by the model despite CERK1 being required for laminarihexaose immune activation, suggesting that CERK1 may act as a co‐receptor for its recognition. Thesein silicoresults were validated by isothermal titration calorimetry binding assays between these MAMPs and recombinant ECDs‐LysM‐PRRs. The robustness of the developed computational screening method was further validated by predicting that CERK1 does not bind the DAMP 1,4‐β‐d‐(Glc)6(cellohexaose), and then probing that immune responses triggered by this DAMP were not impaired in the Arabidopsiscerk1mutant. The computational predictive glycan/PRR binding method developed here might accelerate the discovery of protein–glycan interactions and provide information on immune responses activated by glycoligands.

     
    more » « less
  5. Abstract

    The ability to visualize cytoskeletal proteins and their dynamics in living cells has been critically important in advancing our understanding of numerous cellular processes, including actin‐ and microtubule (MT)‐dependent phenomena such as cell motility, cell division, and mitosis. Here, we describe a novel set of fluorescent protein (FP) fusions designed specifically to visualize MTs in living systems using fluorescence microscopy. Each fusion contains a FP module linked in frame to a modified phospho‐deficient version of the MT‐binding domain of Tau (mTMBD). We found that expressed and purified constructs containing a single mTMBD decoratedXenopusegg extract spindles more homogenously than similar constructs containing the MT‐binding domain of Ensconsin, suggesting that the binding affinity of mTMBD is minimally affected by localized signaling gradients generated during mitosis. Furthermore, MT dynamics were not grossly perturbed by the presence of Tau‐based FP fusions. Interestingly, the addition of a second mTMBD to the opposite terminus of our construct caused dramatic changes to the spatial localization of probes within spindles. These results support the use of Tau‐based FP fusions as minimally perturbing tools to accurately visualize MTs in living systems.

     
    more » « less