The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste.
The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste.
more » « less- PAR ID:
- 10307924
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 133
- Issue:
- 32
- ISSN:
- 0044-8249
- Format(s):
- Medium: X Size: p. 17728-17735
- Size(s):
- p. 17728-17735
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(
o ‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o ‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o ‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate. -
Abstract Searching for a connection between the two‐electron redox behavior of Group‐14 elements and their possible use as platforms for the photoreductive elimination of chlorine, we have studied the photochemistry of [(
o ‐(Ph2P)C6H4)2GeIVCl2]PtIICl2and [(o ‐(Ph2P)C6H4)2ClGeIII]PtIIICl3, two newly isolated isomeric complexes. These studies show that, in the presence of a chlorine trap, both isomers convert cleanly into the platinum germyl complex [(o ‐(Ph2P)C6H4)2ClGeIII]PtICl with quantum yields of 1.7 % and 3.2 % for the GeIV–PtIIand GeIII–PtIIIisomers, respectively. Conversion of the GeIV–PtIIisomer into the platinum germyl complex is a rare example of a light‐induced transition‐metal/main‐group‐element bond‐forming process. Finally, transient‐absorption‐spectroscopy studies carried out on the GeIII–PtIIIisomer point to a ligand arene–Cl.charge‐transfer complex as an intermediate. -
A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt( ii )–Pt( ii ) dimer to the corresponding Pt( ii )–Pt( iii )–H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt( ii )–Pt( ii ) dimer in a particularly reactive conformation that promotes hydrogen formation.more » « less
-
Abstract The dialkyl malonate derived 1,3‐diphosphines R2C(CH2PPh2)2(R=
a , Me;b , Et;c ,n ‐Bu;d ,n ‐Dec;e , Bn;f ,p ‐tolCH2) are combined with (p ‐tol3P)2PtCl2ortrans ‐(p‐ tol3P)2Pt((C≡C)2H)2to give the chelatescis ‐(R2C(CH2PPh2)2)PtCl2(2 a –f , 94–69 %) orcis ‐(R2C(CH2PPh2)2)Pt((C≡C)2H)2(3 a –f , 97–54 %). Complexes3 a –d are also available from2 a –d and excess 1,3‐butadiyne in the presence of CuI (cat.) and excess HNEt2(87–65 %). Under similar conditions,2 and3 react to give the title compounds [(R2C(CH2PPh2)2)[Pt(C≡C)2]4(4 a –f ; 89–14 % (64 % avg)), from which ammonium salts such as the co‐product [H2NEt2]+Cl−are challenging to remove. Crystal structures of4 a ,b show skew rhombus as opposed to square Pt4geometries. The NMR and IR properties of4 a –f are similar to those of mono‐ or diplatinum model compounds. However, cyclic voltammetry gives only irreversible oxidations. As compared to mono‐platinum or Pt(C≡C)2Pt species, the UV‐visible spectra show much more intense and red‐shifted bands. Time dependent DFT calculations define the transitions and principal orbitals involved. Electrostatic potential surface maps reveal strongly negative Pt4C16cores that likely facilitate ammonium cation binding. Analogous electronic properties of Pt3C12and Pt5C20homologs and selected equilibria are explored computationally.