skip to main content


Title: Quantum state tomography of molecules by ultrafast diffraction
Abstract

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments capture only the probability density of the nuclear wavepackets to determine the time-dependent molecular structures, while the full quantum state has not been accessed. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix, which encodes the amplitude and phase of the wavepacket, for molecules of arbitrary degrees of freedom, will enable the reconstruction of a quantum molecular movie from experimental x-ray or electron diffraction data.

 
more » « less
NSF-PAR ID:
10307968
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The outcomes and timescales of molecular nonadiabatic dynamics are decisively impacted by the quantum coherences generated at localized molecular regions. In time-resolved X-ray diffraction imaging, these coherences create distinct signatures via inelastic photon scattering, but they are buried under much stronger background elastic features. Here, we exploit the rich dynamical information encoded in the inelastic patterns, which we reveal by frequency-dispersed covariance ultrafast powder X-ray diffraction of stochastic X-ray free-electron laser pulses. This is demonstrated for the photoisomerization of azobenzene involving the passage through a conical intersection, where the nuclear wave packet branches and explores different quantum pathways. Snapshots of the coherence dynamics are obtained at high frequency shifts, not accessible with conventional diffraction measurements. These provide access to the timing and to the confined spatial distribution of the valence electrons directly involved in the conical intersection passage. This study can be extended to full three-dimensional imaging of conical intersections with ultrafast X-ray and electron diffraction.

     
    more » « less
  2. The ultrafast spontaneous electron-density fluctuation dynamics in molecules is studied theoretically by off-resonant multiple X-ray diffraction events. The time- and wavevector-resolved photon-coincidence signals give an image of electron-density fluctuations expressed through the four-point correlation function of the charge density in momentum space. A Fourier transform of the signal provides a real-space image of the multipoint charge-density correlation functions, which reveal snapshots of the evolving electron density in between the diffraction events. The proposed technique is illustrated by ab initio simulations of the momentum- and real-space inelastic scattering signals from a linear cyanotetracetylene molecule.

     
    more » « less
  3. Abstract

    Gas phase electron diffraction is a powerful technique to measure the structure of molecules in the gas phase, and time-resolved ultrafast electron diffraction has been successful in capturing structural dynamics taking place on femtosecond and picosecond time scales. Diffraction measurements, however, are not sensitive to isotope substitution, and thus cannot distinguish between isotopologues. Here we show that by impulsively aligning the molecules with a short laser pulse and observing the anisotropy in the diffraction signal over multiple revivals of the rotational wavepacket, the relative abundance of molecules with different isotopes can be determined. We demonstrate the technique experimentally and theoretically by studying the rotational dynamics of chloromethane with two naturally occurring chlorine isotopes35Cl and37Cl. We have determined the relative abundance and mass difference of the isotopes. This new methodology adds a new capability to the existing technique of ultrafast electron diffraction.

     
    more » « less
  4. This article highlights the role of spatial confinement in controlling the fundamental behavior of molecules. Select examples illustrate the value of using space as a tool to control and understand excited state dynamics through a combination of ultrafast spectroscopy and conventional steady state methods. Molecules of interest were confined within a closed molecular capsule, derived from a cavitand known as octa acid (OA), whose internal void space is sufficient to accommodate molecules as long as tetracene and as wide as pyrene. The free space, i.e. the space that is left following the occupation of the guest within the host, is shown to play a significant role in altering the behavior of guest molecules in the excited state. The results reported here suggest that in addition to weak interactions that are commonly emphasized in supramolecular chemistry, the extent of empty space (i.e. the remaining void space within the capsule) is important in controlling the excited state behavior of confined molecules on ultrafast time scales. For example, the role of free space in controlling the excited state dynamics of guest molecules is highlighted by probing the cis-trans isomerization of stilbenes and azobenzenes within the OA capsule. Isomerization of both types of molecule are slowed when they are confined within a small space, with encapsulated azobenzenes taking a different reaction pathway compared to that in solution upon excitation to S¬2. In addition to steric constraints, confinement of reactive molecules in a small space helps to override the need for diffusion to bring the reactants together, thus enabling the measurement of processes that occur faster than the time scale for diffusion. The advantages of reducing free space and confining reactive molecules are illustrated by recording unprecedented excimer emission from anthracene and by measuring ultrafast electron transfer rates across the organic molecular wall. By monitoring the translational motion of anthracene pairs in a restricted space it has been possible to document the pathway undertaken by excited anthracene from inception to the formation of the excimer on the excited state surface. Similarly, ultrafast electron transfer experiments pursued here have established that the process is not hindered by a molecular wall. Apparently, the electron can cross the OA capsule wall provided the donor and acceptor are in close proximity. Measurements on the ultrafast time scale provide crucial insights for each of the examples presented here, emphasizing the value of both ‘space’ and ‘time’ in controlling and understanding the dynamics of excited molecules. 
    more » « less
  5. Abstract

    The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2V−1s1being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals.

     
    more » « less