skip to main content


Title: A microfluidic platform for highly parallel bite by bite profiling of mosquito-borne pathogen transmission
Abstract

Mosquito bites transmit a number of pathogens via salivary droplets deposited during blood-feeding, resulting in potentially fatal diseases. Little is known about the genomic content of these nanodroplets, including the transmission dynamics of live pathogens. Here we introduce Vectorchip, a low-cost, scalable microfluidic platform enabling high-throughput molecular interrogation of individual mosquito bites. We introduce an ultra-thin PDMS membrane which acts as a biting interface to arrays of micro-wells. Freely-behaving mosquitoes deposit saliva droplets by biting into these micro-wells. By modulating membrane thickness, we observe species-dependent differences in mosquito biting capacity, utilizable for selective sample collection. We demonstrate RT-PCR and focus-forming assays on-chip to detect mosquito DNA, Zika virus RNA, as well as quantify infectious Mayaro virus particles transmitted from single mosquito bites. The Vectorchip presents a promising approach for single-bite-resolution laboratory and field characterization of vector-pathogen communities, and could serve as a powerful early warning sentinel for mosquito-borne diseases.

 
more » « less
NSF-PAR ID:
10307998
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mosquito-borne diseases (MBD) threaten over 80% of the world’s population, and are increasing in intensity and shifting in geographical range with land use and climate change. Mitigation hinges on understanding disease-specific risk profiles, but current risk maps are severely limited in spatial resolution. One important determinant of MBD risk is temperature, and though the relationships between temperature and risk have been extensively studied, maps are often created using sparse data that fail to capture microclimatic conditions. Here, we leverage high resolution land surface temperature (LST) measurements, in conjunction with established relationships between air temperature and MBD risk factors like mosquito biting rate and transmission probability, to produce fine resolution (70 m) maps of MBD risk components. We focus our case study on West Nile virus (WNV) in the San Joaquin Valley of California, where temperatures vary widely across the day and the diverse agricultural/urban landscape. We first use field measurements to establish a relationship between LST and air temperature, and apply it to Ecosystem Spaceborne Thermal Radiometer Experiment data (2018–2020) in peak WNV transmission months (June–September). We then use the previously derived equations to estimate spatially explicit mosquito biting and WNV transmission rates. We use these maps to uncover significant differences in risk across land cover types, and identify the times of day which contribute to high risk for different land covers. Additionally, we evaluate the value of high resolution spatial and temporal data in avoiding biased risk estimates due to Jensen’s inequality, and find that using aggregate data leads to significant biases of up to 40.5% in the possible range of risk values. Through this analysis, we show that the synergy between novel remote sensing technology and fundamental principles of disease ecology can unlock new insights into the spatio-temporal dynamics of MBDs.

     
    more » « less
  2. Abstract

    Mosquito‐borne diseases cause a major burden of disease worldwide. The vital rates of these ectothermic vectors and parasites respond strongly and nonlinearly to temperature and therefore to climate change. Here, we review how trait‐based approaches can synthesise and mechanistically predict the temperature dependence of transmission across vectors, pathogens, and environments. We present 11 pathogens transmitted by 15 different mosquito species – including globally important diseases like malaria, dengue, and Zika – synthesised from previously published studies. Transmission varied strongly and unimodally with temperature, peaking at 23–29ºC and declining to zero below 9–23ºC and above 32–38ºC. Different traits restricted transmission at low versus high temperatures, and temperature effects on transmission varied by both mosquito and parasite species. Temperate pathogens exhibit broader thermal ranges and cooler thermal minima and optima than tropical pathogens. Among tropical pathogens, malaria and Ross River virus had lower thermal optima (25–26ºC) while dengue and Zika viruses had the highest (29ºC) thermal optima. We expect warming to increase transmission below thermal optima but decrease transmission above optima. Key directions for future work include linking mechanistic models to field transmission, combining temperature effects with control measures, incorporating trait variation and temperature variation, and investigating climate adaptation and migration.

     
    more » « less
  3. Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, Aedes aegypti , through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena. The results show that graphene or graphene oxide nanosheet films in the dry state are highly effective at suppressing mosquito biting behavior on live human skin. Surprisingly, behavioral assays indicate that the primary mechanism is not mechanical puncture resistance, but rather interference with host chemosensing. This interference is proposed to be a molecular barrier effect that prevents Aedes from detecting skin-associated molecular attractants trapped beneath the graphene films and thus prevents the initiation of biting behavior. The molecular barrier effect can be circumvented by placing water or human sweat as molecular attractants on the top (external) film surface. In this scenario, pristine graphene films continue to protect through puncture resistance—a mechanical barrier effect—while graphene oxide films absorb the water and convert to mechanically soft hydrogels that become nonprotective. 
    more » « less
  4. Abstract

    Bite force is a performance metric commonly used to link cranial morphology with dietary ecology, as the strength of forces produced by the feeding apparatus largely constrains the foods an individual can consume. At a macroevolutionary scale, there is evidence that evolutionary changes in the anatomical elements involved in producing bite force have contributed to dietary diversification in mammals. Much less is known about how these elements change over postnatal ontogeny. Mammalian diets drastically shift over ontogeny—from drinking mother's milk to feeding on adult foods—presumably with equally drastic changes in the morphology of the feeding apparatus and bite performance. Here, we investigate ontogenetic morphological changes in the insectivorous big brown bat (Eptesicus fuscus), which has an extreme, positive allometric increase in bite force during development. Using contrast‐enhanced micro‐computed tomography scans of a developmental series from birth to adult morphology, we quantified skull shape and measured skeletal and muscular parameters directly related to bite force production. We found pronounced changes in the skull over ontogeny, including a large increase in the volume of the temporalis and masseter muscles, and an expansion of the skull dome and sagittal crest that would serve to increase the temporalis attachment area. These changes indicate that development of the jaw adductors play an important role in the development of biting performance of these bats. Notably, static bite force increases with positive allometry with respect to all anatomical measures examined, suggesting that modifications in biting dynamics and/or improved motor coordination also contribute to increases in biting performance.

     
    more » « less
  5. Abstract

    In temperate regions of the United States, female Anopheles mosquitoes respond to low temperatures and short photoperiods by entering an overwintering dormancy or diapause. Diapause in Anopheles results in reduced frequency of blood-feeding and reproductive arrest, indicating a period when pathogen transmission by these mosquitoes is unlikely. However, it is unclear precisely how late into the fall and how early in the spring these mosquitoes are biting, reproducing, and potentially transmitting pathogens. This is further complicated by the lack of clear markers of diapause in Anopheles (e.g., changes in egg follicle length). Our goal was to characterize the seasonal reproductive activity of female Anopheles in central Ohio, United States and evaluate egg follicle length as an indicator of Anopheles diapause. We used traditional mosquito traps and aspirators to collect Anopheles from urban woodlots and culverts, respectively, from late September 2021 through mid-May 2022 in central Ohio. By measuring their egg follicle length, reproductive status, and blood-feeding status, we found that egg follicle length is not a reliable indicator of Anopheles diapause. We also found that a small proportion of An. punctipennis (Say), An. perplexens (Ludlow), and An. quadrimaculatus (Say) continued to bite and reproduce into early November 2021 and that females of these species terminated reproductive dormancy and began biting by mid-March 2022. This period of reproductive activity extends beyond current mosquito surveillance and control in Ohio. Our findings suggest that within temperate regions of North America, Anopheles have the capacity to transmit pathogens throughout the spring, summer, and fall.

     
    more » « less