We experimentally demonstrate long-wavelength-infrared (LWIR) femtosecond filamentation in solids. Systematic investigations of supercontinuum (SC) generation and self-compression of the LWIR pulses assisted by laser filamentation are performed in bulk KrS-5 and ZnSe, pumped by
We investigated the filamentation in air of 7 ps laser pulses of up to 200 mJ energy from a 1.03 μm-wavelength Yb:YAG laser at repetition rates up to
- Publication Date:
- NSF-PAR ID:
- 10308233
- Journal Name:
- Optics Letters
- Volume:
- 46
- Issue:
- 21
- Page Range or eLocation-ID:
- Article No. 5449
- ISSN:
- 0146-9592; OPLEDP
- Publisher:
- Optical Society of America
- Sponsoring Org:
- National Science Foundation
More Like this
-
, 9 µm, 10 µJ pulses from an optical parametric chirped-pulse amplifier operating at 10 kHz of repetition rate. Multi-octave SC spectra are demonstrated in both materials. While forming stable single filament, 1.5 cycle LWIR pulses with 4.5 µJ output pulse energy are produced via soliton-like self-compression in a 5 mm thick KrS-5. The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation. This work shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids. -
We report on spectroscopic measurements on the
transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the state were found to be , and , , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. -
A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (
) to a chip-scale mode-locked laser with a repetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is at 1 s with a trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than of optical power to achieve stable locking. -
Electro-optic quantum coherent interfaces map the amplitude and phase of a quantum signal directly to the phase or intensity of a probe beam. At terahertz frequencies, a fundamental challenge is not only to sense such weak signals (due to a weak coupling with a probe in the near-infrared) but also to resolve them in the time domain. Cavity confinement of both light fields can increase the interaction and achieve strong coupling. Using this approach, current realizations are limited to low microwave frequencies. Alternatively, in bulk crystals, electro-optic sampling was shown to reach quantum-level sensitivity of terahertz waves. Yet, the coupling strength was extremely weak. Here, we propose an on-chip architecture that concomitantly provides subcycle temporal resolution and an extreme sensitivity to sense terahertz intracavity fields below 20 V/m. We use guided femtosecond pulses in the near-infrared and a confinement of the terahertz wave to a volume of
in combination with ultraperformant organic molecules ( ) and accomplish a record-high single-photon electro-optic coupling rate of , 10,000 times higher than in recent reports of sensing vacuum field fluctuations in bulk media. Via homodyne detection implemented directly on chip, the interaction results into an intensity modulation of the femtosecond pulses. The single-photon cooperativity is , and the multiphoton cooperativity is at room temperature. We show dynamic range in intensity at 500 ms integration under irradiation with a weak coherent terahertz field. Similar devices could be employed in future measurements of quantum states in the terahertz at the standard quantum limit, or for entanglement of subsystems on subcycle temporal scales, such as terahertz and near-infrared quantum bits. -
Vacuum-ultraviolet (VUV) light is critical for the study of molecules and materials, but the generation of femtosecond pulses in the VUV region at high repetition rates has proven difficult. Here we demonstrate the efficient generation of VUV light at megahertz repetition rates using highly cascaded four-wave mixing processes in a negative-curvature hollow-core fiber. Both even- and odd-order harmonics are generated up to the 15th harmonic (69 nm, 18.0 eV), with high energy resolution of
. In contrast to direct high harmonic generation, this highly cascaded harmonic generation process requires lower peak intensity and therefore can operate at higher repetition rates, driven by a robust fiber-laser system in a compact setup. Additionally, we present numerical simulations that explore the fundamental capabilities and spatiotemporal dynamics of highly cascaded harmonic generation. This VUV source can enhance the capabilities of spectroscopies of molecular and quantum materials, such as photoionization mass spectrometry and time-, angle-, and spin-resolved photoemission.