skip to main content

Title: Dislocation structure of deformed olivine single crystals from conventional EBSD maps

Dislocations, linear defects in a crystalline lattice characterized by their slip systems, can provide a record of grain internal deformation. Comprehensive examination of this record has been limited by intrinsic limitations of the observational methods. Transmission electron microscopy reveals individual dislocations, but images only a few square$$\upmu$$μm of sample. Oxidative decoration requires involved sample preparation and has uncertainties in detection of all dislocations and their types. The possibility of mapping dislocation density and slip systems by conventional (Hough-transform based) EBSD is investigated here with naturally and experimentally deformed San Carlos olivine single crystals. Geometry and dislocation structures of crystals deformed in orientations designed to activate particular slip systems were previously analyzed by TEM and oxidative decoration. A curvature tensor is calculated from changes in orientation of the crystal lattice, which is inverted to calculate density of geometrically necessary dislocations with the Matlab Toolbox MTEX. Densities of individual dislocation types along with misorientation axes are compared to orientation change measured on the deformed crystals. After filtering (denoising), noise floor and calculated dislocation densities are comparable to those reported from high resolution EBSD mapping. For samples deformed in [110]c and [011]c orientations EBSD mapping confirms [100](010) and [001](010), respectively, as the dominant slip systems. EBSD mapping thus enables relatively efficient observation of dislocation structures associated with intracrystalline deformation, both distributed, and localized at sub-boundaries, over substantially larger areas than has previously been possible. This will enable mapping of dislocation structures in both naturally and experimentally deformed polycrystals, with potentially new insights into deformation processes in Earth’s upper mantle.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Physics and Chemistry of Minerals
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron‐rich olivine is mechanically weaker than olivine of mantle composition, ca. Fo90, and thus is more amenable to study under a wide range of laboratory conditions. To investigate the effects of iron content on deformation‐produced crystallographic preferred orientation (CPO) and grain size, we analyzed the microstructures of olivine samples with compositions of Fo70, Fo50, and Fo0that were deformed in torsion under either anhydrous or hydrous conditions at 300 MPa. Electron backscatter diffraction (EBSD) observations reveal a transition in CPO from D‐type fabric, induced by dislocation glide on both the (010)[100] and the (001)[100] slip systems, at low strains, to A‐type fabric, caused by dislocation glide on the (010)[100] slip system, at high strains for all of our samples, independent of iron content and hydrous/anhydrous conditions. A similar evolution of fabric with increasing strain is also reported to occur for Fo90. Radial seismic anisotropy increases with increasing strain, reaching a maximum value of ∼1.15 at a shear strain of ∼3.5 for each sample, demonstrating that the seismic anisotropy of naturally deformed olivine‐rich rocks can be well approximated by that of iron‐rich olivine. Based on EBSD observations, we derived a piezometer for which recrystallized grain size decreases inversely with stress to the ∼1.2 power. Also, recrystallized grain size increases with increasing iron content. Our experimental results contribute to understanding the microstructural evolution in the mantle of not only Earth but also Mars, where the iron content in olivine is higher.

    more » « less
  2. Abstract

    Synthesized polycrystalline samples composed of enstatite and olivine with different volumetric ratios were deformed in compression under anhydrous conditions in a Paterson gas‐medium apparatus at 1150–1300°C, an oxygen fugacity buffered at Ni/NiO, and confining pressures of 300 or 450 MPa (protoenstatite or orthoenstatite fields). Mechanical data suggest a transition from diffusion to dislocation creep with increasing differential stress for all compositions. Microstructural analyses by optical and scanning electron microscopy reveal well‐mixed aggregates and homogeneous deformation. Crystallographic preferred orientations measured by electron backscatter diffraction are consistent with activation of the slip systems (010)[100] and (010)[001] for olivine and (100)[001] and (010)[001] for enstatite, as expected at these conditions. Nonlinear least‐squares fitting to the full data set from each experiment allowed the determination of dislocation creep flow laws for the different mixtures. The stress exponent is 3.5 for all compositions, and the apparent activation energies increase slightly as a function of enstatite volume fraction. Within the limits of experimental uncertainties, all two‐phase aggregates have strengths that lie between the uniform strain rate (Taylor) and the uniform stress (Sachs) bounds calculated using the dislocation creep flow laws for olivine and enstatite. Calculation of the Taylor and Sachs bounds at strain rate and temperature conditions expected in nature (but not extrapolating in pressure) indicates that using the dislocation creep flow law for monomineralic olivine aggregates provides a good estimate of the viscosity of olivine‐orthopyroxene rocks deforming by dislocation creep in the deeper lithosphere and asthenosphere.

    more » « less
  3. Abstract

    Seismic anisotropy produced by aligned olivine in oceanic lithosphere offers a window into mid‐ocean ridge (MOR) dynamics. Yet, interpreting anisotropy in the context of grain‐scale deformation processes and strain observed in laboratory experiments and natural olivine samples has proven challenging due to incomplete seismological constraints and length scale differences spanning orders of magnitude. To bridge this observational gap, we estimate an in situ elastic tensor for oceanic lithosphere using co‐located compressional‐ and shear‐wavespeed anisotropy observations at the NoMelt experiment located on ∼70 Ma seafloor. The elastic model for the upper 7 km of the mantle, NoMelt_SPani7, is characterized by a fast azimuth parallel to the fossil‐spreading direction, consistent with corner‐flow deformation fabric. We compare this model with a database of 123 petrofabrics from the literature to infer olivine crystallographic orientations and shear strain accumulated within the lithosphere. Direct comparison to olivine deformation experiments indicates strain accumulation of 250%–400% in the shallow mantle. We find evidence for D‐type olivine lattice‐preferred orientation (LPO) with fast [100] parallel to the shear direction and girdled [010] and [001] crystallographic axes perpendicular to shear. D‐type LPO implies similar amounts of slip on the (010)[100] and (001)[100] easy slip systems during MOR spreading; we hypothesize that grain‐boundary sliding during dislocation creep relaxes strain compatibility, allowing D‐type LPO to develop in the shallow lithosphere. Deformation dominated by dislocation‐accommodated grain‐boundary sliding (disGBS) has implications for in situ stress and grain size during MOR spreading and implies grain‐size dependent deformation, in contrast to pure dislocation creep.

    more » « less
  4. Abstract

    The deformation of crystalline materials by dislocation motion takes place in discrete amounts determined by the Burgers vector. Dislocations may move individually or in bundles, potentially giving rise to intermittent slip. This confers plastic deformation with a certain degree of variability that can be interpreted as being caused by stochastic fluctuations in dislocation behavior. However, crystal plasticity (CP) models are almost always formulated in a continuum sense, assuming that fluctuations average out over large material volumes and/or cancel out due to multi-slip contributions. Nevertheless, plastic fluctuations are known to be important in confined volumes at or below the micron scale, at high temperatures, and under low strain rate/stress deformation conditions. Here, we develop a stochastic solver for CP models based on the residence-time algorithm that naturally captures plastic fluctuations by sampling among the set of active slip systems in the crystal. The method solves the evolution equations of explicit CP formulations, which are recast as stochastic ordinary differential equations and integrated discretely in time. The stochastic CP model is numerically stable by design and naturally breaks the symmetry of plastic slip by sampling among the active plastic shear rates with the correct probability. This can lead to phenomena such as intermittent slip or plastic localization without adding external symmetry-breaking operations to the model. The method is applied to body-centered cubic tungsten single crystals under a variety of temperatures, loading orientations, and imposed strain rates.

    more » « less
  5. Abstract

    A study of possible superconducting phases of graphene has been constructed in detail. A realistic tight binding model, fit to ab initio calculations, accounts for the Li-decoration of graphene with broken lattice symmetry, and includessanddsymmetry Bloch character that influences the gap symmetries that can arise. The resulting seven hybridized Li-C orbitals that support nine possible bond pairing amplitudes. The gap equation is solved for all possible gap symmetries. One band is weakly dispersive near the Fermi energy along Γ → Mwhere its Bloch wave function has linear combination of$${d}_{{x}^{2}-{y}^{2}}$$dx2y2anddxycharacter, and is responsible for$${d}_{{x}^{2}-{y}^{2}}$$dx2y2anddxypairing with lowest pairing energy in our model. These symmetries almost preserve properties from a two band model of pristine graphene. Another part of this band, alongK → Γ, is nearly degenerate with uppersband that favors extendedswave pairing which is not found in two band model. Upon electron doping to a critical chemical potentialμ1 = 0.22 eVthe pairing potential decreases, then increases until a second critical valueμ2 = 1.3 eV at which a phase transition to a distorteds-wave occurs. The distortion ofd- or s-wave phases are a consequence of decoration which is not appear in two band pristine model. In the pristine graphene these phases convert to usuald-wave or extendeds-wave pairing.

    more » « less