skip to main content


Title: Mule deer do more with less: comparing their nutritional requirements and tolerances with white-tailed deer
Abstract

Congeneric species often share ecological niche space resulting in competitive interactions that either limit co-occurrence or lead to niche partitioning. Differences in fundamental nutritional niches mediated through character displacement or isolation during evolution are potential mechanisms that could explain overlapping distribution patterns of congenerics. We directly compared nutritional requirements and tolerances that influence the fundamental niche of mule (Odocoileus hemionus) and white-tailed deer (O. virginianus), which occur in allopatry and sympatry in similar realized ecological niches across their ranges in North America. Digestible energy and protein requirements and tolerances for plant fiber and plant secondary metabolites (PSMs) of both deer species were quantified using in vivo digestion and intake tolerance trials with six diets ranging in content of fiber, protein, and PSMs using tractable deer raised under identical conditions in captivity. We found that compared with white-tailed deer, mule deer required 54% less digestible protein and 21% less digestible energy intake per day to maintain body mass and nitrogen balance. In addition, they had higher fiber, energy, and dry matter digestibility and produced glucuronic acid (a byproduct of PSM detoxification) at a slower rate when consuming the monoterpene α-pinene. The mule deers’ enhanced physiological abilities to cope with low-quality, chemically defended forages relative to white-tailed deer might minimize potential competitive interactions in shared landscapes and provide a modest advantage to mule deer in habitats dominated by low-quality forages.

 
more » « less
Award ID(s):
1826801
NSF-PAR ID:
10308446
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Mammalogy
Volume:
103
Issue:
1
ISSN:
0022-2372
Page Range / eLocation ID:
p. 178-195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer,Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; −45 ± 19 g m−2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m−2 year−1led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m−2 year−1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forbArtemisia ludovicianaby 34 ± 12 SE g m−2(94%) and decreased the forbSolidago rigidaby 32 ± 13 SE g m−2(79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.

     
    more » « less
  2. Abstract

    Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual‐level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the “opportunity cost” of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high‐quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck,Tragelaphus sylvaticus) in an African floodplain‐savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS‐collared animals (range 6–14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual‐level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity‐of‐use index), and had higher‐quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual‐level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.

     
    more » « less
  3. Abstract

    Changes in trophic niche—the pathways through which an organism obtains energy and nutrients—are a fundamental way in which organisms respond to environmental conditions. But the capacity for species to alter their trophic niches in response to global change, and the ways they do so when able, remain largely unknown.

    Here we examine food webs in three long‐term and large‐scale experiments to test how resource availability and nutritional requirements interact to determine an organism's trophic niche in the context of one of the largest global trends in land use—the rise in bioenergy production.

    We use carbon and nitrogen stable isotope analyses to characterize arthropod food webs across three biofuel crops representing a gradient in plant resource richness (corn monocultures, fields dominated by native switchgrass and restored prairie), and to quantify changes in the trophic niche of a widespread generalist ant species across habitats. In doing so, we measure the effects of basal resource richness on food chain length, niche breadth and trophic position. We frame our results in the context of two hypotheses that explain variation in trophic niche—the niche variation hypothesis which emphasizes the importance of resource diversity and ecological opportunity, and the optimal diet hypothesis which emphasizes dietary constraints and the availability of optimal resources.

    Increasing plant richness lengthened food chains by 10%–20% compared to monocultures. Niche breadths of generalist ants did not vary with resource richness, suggesting they were limited by optimal diet requirements and constraints rather than by ecological opportunity. The ants instead responded to changes in plant richness by shifting their estimated trophic position. In resource‐poor monocultures, the ants were top predators, sharing a trophic position with predatory spiders. In resource‐rich environments, in contrast, the ants were omnivores, relying on a mix of animal prey and plant‐based resources.

    In addition to highlighting novel ecosystem impacts of alternate bioenergy landscapes, our results suggest that niche breadth and trophic diversification depend more on the presence of optimal resources than on ecological opportunity alone.

     
    more » « less
  4. White-tailed deer (Odocoileus virginianus) hunting is an important economic activity associated with the management of forests and rangelands in the USA, with over $12.9 billion dollars of related annual expenditures. Reducing tree cover through thinning and prescribed fire both have the potential to increase the quantity and quality of deer forage. We evaluated the long-term impacts of eight different combinations of fire return intervals and tree harvest on forage productivity and protein content of the forage. Based on management regime, study units ranged from savanna to closed-canopy forest. Aboveground net primary production (ANPP) of six functional groups (grass, panicum, forb, legume, woody, sedge) of understory vegetation was measured in October 2019 and 2020 using destructive sampling. Samples for foliar crude protein (CP) concentration were collected in spring, summer, and fall of 2020. Total understory ANPP ranged from 2.9 to 466.3 g m− 2 and was up to 566% greater in savanna systems maintained by frequent fire (return interval of three years or less) than in non-burned forest treatments. Annual burning resulted in ANPP dominated by herbaceous plants composed mostly of firetolerant grasses (e.g., Andropogon gerardii, Schizachyrium scoparium). Longer fire return intervals or no fire resulted in roughly equal ANPP from understory woody and herbaceous species. Crude protein concentrations were up to 45.7% greater in the woodland and forest units than in the savanna units for seven of the eleven species sampled. The greater CP in the forests was most noticeable in the summer when deer needs for quality forage are substantial. Increased protein concentrations of understory species in the forests, but greater ANPP in the savannas indicate that managing for a mix of savanna and woodland could be ideal for balancing forage quantity with increased forage protein. 
    more » « less
  5. Abstract

    Crop raiding by wildlife poses major threats to both wildlife conservation and human well‐being in agroecosystems worldwide. These threats are particularly acute in many parts of Africa, where crop raiders include globally threatened megafauna such as elephants, and where smallholder agriculture is a primary source of human livelihood. One framework for understanding herbivore feeding behaviour, the forage‐maturation hypothesis, predicts that herbivores should align their movements with intermediate forage biomass (i.e., peak green‐up); this phenomenon is known as “surfing the green wave.” Crop‐raiding elephants, however, often consume not just foliage, but also fruits and tubers (e.g., maize and potatoes), which generally mature after seasonal peaks in photosynthetic activity. Thus, although elephants have been reported to surf the green wave in natural habitats, they may utilize a different strategy in cultivated landscapes by selecting crops that are “browning down.”

    We sought to understand the factors that underpin movement of elephants into agricultural landscapes.

    In Mozambique's Gorongosa National Park, we used movement data from GPS‐collared elephants, together with precipitation records, remotely sensed estimates of landscape greenness (NDVI), DNA‐based diet analysis, measurements of plant nutritional quality and survey‐based metrics of crop availability to understand spatiotemporal variation in elephant crop‐raiding behaviour.

    Elephants tracked peak NDVI while foraging inside the Park. During the dry season, however, when NDVI within the Park declined and availability of mature crops was high, crop raiding increased dramatically, and elephants consistently selected crop plants that were browning down while foraging in cultivated landscapes. Crops contained significantly higher digestible energy than wild food plants, but comparable (and sometimes lower) levels of digestible protein, suggesting that this foraging strategy maximized energy rather than protein intake.

    Our study is the first to combine GPS tracking data with high‐resolution diet analysis and community‐based reporting of crop availability to reveal fine‐scale plasticity in foraging behaviour of elephants at the human–wildlife interface. Our results extend the forage‐maturation hypothesis by showing that elephants surf waves of plant brown‐down in cultivated landscapes. These findings can aid efforts to reduce human–elephant conflict by enabling wildlife managers to prioritize mitigation actions in time and space with limited resources.

     
    more » « less