skip to main content


Title: Dark Energy Camera photometry reveals extra-tidal stars around the Milky Way globular cluster NGC 6864 (M75)
ABSTRACT

Globular clusters are prone to lose stars while moving around the Milky Way. These stars escape the clusters and are distributed throughout extended envelopes or tidal tails. However, such extra-tidal structures are not observed in all globular clusters, and yet there are no structural or dynamical parameters that can predict their presence or absence. NGC 6864 is an outer halo globular cluster with reported no observed tidal tails. We used Dark Energy Camera photometry reaching ∼4 mag underneath its main-sequence turnoff to confidently detect an extra-tidal envelope, and stellar debris spread across the cluster outskirts. These features emerged once robust field star filtering techniques were applied to the fainter end of the observed cluster main sequence. NGC 6864 is associated to the Gaia-Enceladus dwarf galaxy, among others 28 globular clusters. Up-to-date, nearly 64${{\ \rm per\,cent}}$ of them have been targeted looking for tidal tails and most of them have been confirmed to exhibit tidal tails. Thus, the present outcomes allow us to speculate on the possibility that Gaia-Enceladus globular clusters share a common pattern of mass loss by tidal disruption.

 
more » « less
NSF-PAR ID:
10308510
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
509
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 3709-3716
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We use deep imaging from the Dark Energy Camera to explore the peripheral regions of nine globular clusters in the outer halo of the Milky Way. Apart from Whiting 1 and NGC 7492, which are projected against the Sagittarius stream, we see no evidence for adjacent stellar populations to indicate any of these clusters is associated with coherent tidal debris from a destroyed host dwarf. We also find no evidence for tidal tails around any of the clusters in our sample; however, both NGC 1904 and 6981 appear to possess outer envelopes. Motivated by a slew of recent Gaia-based discoveries, we compile a sample of clusters with robust detections of extra-tidal structure, and search for correlations with orbital properties. While we observe that clusters with tidal tails are typically on moderately or very eccentric orbits that are highly inclined to the Galactic plane and often retrograde, these are neither necessary nor sufficient conditions for the formation of extra-tidal structure. That many objects with tidal tails appear to be accreted leads us to speculate that this lack of consistency may stem from the inhomogeneous dynamical history of the Milky Way globular cluster system. Finally, we note that clusters with prominent stellar envelopes detected in ground-based imaging (such as NGC 1851 and 7089) are now all known from Gaia to possess long tidal tails – experimental confirmation that the presence of an extended envelope is indicative of tidal erosion.

     
    more » « less
  2. Abstract

    The theory of stellar escape from globular clusters (GCs) dates back nearly a century, especially the gradual evaporation of GCs via two-body relaxation coupled with external tides. More violent ejection can also occur via strong gravitational scattering, supernovae, gravitational wave-driven mergers, tidal disruption events, and physical collisions, but comprehensive study of the many escape mechanisms has been limited. Recent exquisite kinematic data from the Gaia space telescope has revealed numerous stellar streams in the Milky Way (MW) and traced the origin of many to specific MWGCs, highlighting the need for further examination of stellar escape from these clusters. In this study, the first of a series, we lay the groundwork for detailed follow-up comparisons between Cluster Monte Carlo GC models and the latest Gaia data on the outskirts of MWGCs, their tidal tails, and associated streams. We thoroughly review escape mechanisms from GCs and examine their relative contributions to the escape rate, ejection velocities, and escaper demographics. We show for the first time that three-body binary formation may dominate high-speed ejection from typical MWGCs, potentially explaining some of the hypervelocity stars in the MW. Due to their mass, black holes strongly catalyze this process, and their loss at the onset of observable core collapse, characterized by a steep central brightness profile, dramatically curtails three-body binary formation, despite the increased post-collapse density. We also demonstrate that even when born from a thermal eccentricity distribution, escaping binaries have significantly nonthermal eccentricities consistent with the roughly uniform distribution observed in the Galactic field.

     
    more » « less
  3. Abstract

    Globular clusters (GCs) are particularly efficient at forming millisecond pulsars. Among these pulsars, about half lack a companion star, a significantly higher fraction than in the Galactic field. This fraction increases further in some of the densest GCs, especially those that have undergone core collapse, suggesting that dynamical interaction processes play a key role. For the first time, we createN-body models that reproduce the ratio of single-to-binary pulsars in Milky Way–like GCs. We focus especially on NGC 6752, a typical core-collapsed cluster with many observed millisecond pulsars. Previous studies suggested that an increased rate of neutron star binary disruption in the densest clusters could explain the overabundance of single pulsars in these systems. Here, we demonstrate that binary disruption is ineffective and instead we propose that two additional dynamical processes play dominant roles: (1) tidal disruption of main-sequence stars by neutron stars and (2) gravitational collapse of heavy white dwarf binary merger remnants. Neutron stars formed through these processes may also be associated with fast radio bursts similar to those observed recently in an extragalactic GC.

     
    more » « less
  4. ABSTRACT

    Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We therefore present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries.

     
    more » « less
  5. Abstract

    We used high-resolution spectra acquired with the Magellan Telescope to measure radial and rotational velocities of approximately 200 stars in the Galactic globular cluster NGC 3201. The surveyed sample includes blue straggler stars (BSSs) and reference stars in different evolutionary stages (main-sequence turnoff, subgiant, red giant, and asymptotic giant branches). The average radial velocity value (〈Vr〉 = 494.5 ± 0.5 km s−1) confirms a large systemic velocity for this cluster and was used to distinguish 33 residual field interlopers. The final sample of member stars has 67 BSSs and 114 reference stars. Similarly to what is found in other clusters, the totality of the reference stars has negligible rotation (< 20 km s−1), while the BSS rotational velocity distribution shows a long tail extending up to ∼200 km s−1, with 19 BSSs (out of 67) spinning faster than 40 km s−1. This sets the percentage of fast-rotating BSSs to ∼28%. Such a percentage is roughly comparable to that measured in other loose systems (ωCentauri, M4, and M55) and significantly larger than that measured in high-density clusters (as 47 Tucanae, NGC 6397, NGC 6752, and M30). This evidence supports a scenario where recent BSS formation (mainly from the evolution of binary systems) is occurring in low-density environments. We also find that the BSS rotational velocity tends to decrease for decreasing luminosity and surface temperature, similarly to what is observed in main-sequence stars. Hence, further investigations are needed to understand the impact of BSS internal structure on the observed rotational velocities.

     
    more » « less