A custom-designed series of unsymmetrical spiroalkanedithiols having tailgroups comprised of a terminally fluorinated chain and a hydrocarbon chain of varying lengths were synthesized and used to prepare self-assembled monolayers (SAMs) on gold substrates. The specific structure of the adsorbates was of the form [CH3(CH2)n][CF3(CF2)7(CH2)8]C[CH2SH]2, where n = 7, 9, and 15 (designated as F8H10-C10, F8H10-C12, and F8H10-C18, respectively). The influence of the length of the hydrocarbon chain in the bidentate dithiol on the structure and interfacial properties of the monolayer was explored. A structurally analogous partially fluorinated monodentate alkanethiol and the corresponding normal alkanethiols were used to generate appropriate SAMs as reference systems. Measurements of ellipsometric thickness showed an unexpectedly low film thickness for the SAMs derived from the bidentate adsorbates, possibly due to disruptions in interchain packing caused by the fluorocarbon chains (i.e., phase-incompatible fluorocarbon-hydrocarbon interactions), ultimately giving rise to loosely packed and disordered films. Analysis by X-ray photoelectron spectroscopy (XPS) were also consistent with a model in which the films were loosely packed; additionally, the XPS spectra confirmed the attachment of the sulfur headgroups of the bidentate adsorbates onto the gold substrates. Studies of the SAMs by polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS) suggested that as the length of the hydrocarbon chain in the adsorbates was extended, a more ordered surface was achieved by reducing the tilt of the fluorocarbon segment. The wettability data indicated that the adsorbates with longer alkyl chains were less wettable than those with shorter alkyl chains, likely due to an increase in interchain van der Waals forces in the former.
more »
« less
Antifouling Studies of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiol Self-Assembled Monolayers
The antifouling properties of self-assembled monolayers (SAMs) on gold generated from custom-designed bidentate unsymmetrical spiroalkanedithiols containing both oligo(ethylene glycol) and hydrocarbon tailgroups (EG3C7-C7 and EG3C7-C18) were evaluated and compared to SAMs derived from analogous monodentate octadecanethiol (C18SH) and the tri(ethylene glycol)-terminated alkanethiol EG3C7SH. Complementary techniques, including in situ surface plasmon resonance spectroscopy (SPR), ex situ electrochemical quartz crystal microbalance (QCM) measurements, and ex situ ellipsometric thickness measurements, were employed to assess the protein resistance of the SAMs using proteins having a wide range of sizes, structures, and properties: protamine, lysozyme, bovine serum albumin (BSA), and fibrinogen. The studies found that SAMs generated from the bidentate adsorbates EG3C7-C7 and EG3C7-C18, which contain a 1:1 mixture of OEG and hydrocarbon tailgroups, exhibited a diminished capacity to resist protein adsorption compared to the EG3C7SH SAMs, which possess only OEG tailgroups. The data highlight the critical role of hydration of the OEG matrix for generating antifouling OEG-based surface coatings.
more »
« less
- Award ID(s):
- 1710561
- PAR ID:
- 10308735
- Date Published:
- Journal Name:
- Micro
- Volume:
- 1
- Issue:
- 1
- ISSN:
- 2673-8023
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)With PEG-like properties, such as hydrophilicity and stealth effect against protein absorption, oligo(ethylene glycol) (OEG)-functionalized polypeptides have emerged as a new class of biomaterials alternative to PEG with polypeptide-like properties. Synthesis of this class of materials, however, has been demonstrated very challenging, as the synthesis and purification of OEG-functionalized N -carboxyanhydrides (OEG-NCAs) in high purity, which is critical for the success in polymerization, is tedious and often results in low yield. OEG-functionalized polypeptides are therefore only accessible to a few limited labs with expertise in this specialized NCA chemistry and materials. Here, we report the controlled synthesis of OEG-functionalized polypeptides in high yield directly from the OEG-functionalized amino acids via easy and reproducible polymerization of non-purified OEG-NCAs. The prepared amphiphilic block copolypeptides can self-assemble into narrowly dispersed nanoparticles in water, which show properties suitable for drug delivery applications.more » « less
-
Coatings that prevent or decrease fouling are sought for many applications, including those that inhibit the attachment of organisms in aquatic environments. To date, antifouling coatings have mostly followed design criteria assembled over decades: surfaces should be well/strongly hydrated, possess low net charge and maintain a hydrophilic character when exposed to the location of use. Thus, polymers based on ethylene glycol or zwitterionic repeat units have been shown to be highly effective. Unfortunately, hydrated materials can be quite soft, limiting their use in some environments. In a major paradigm shift, this work describes glassy antifouling films made from certain complexes of positive and negative polyelectrolytes. The dense network of electrostatic interactions yields tough materials below the glass transition temperature, Tg, in normal use, while the highly ionic character of these polyelectrolyte complexes ensures strong hydration. The close proximity of equal numbers of opposite charges within these complexes mimics zwitterionic structures. Films, assembled layer-by-layer from aqueous solutions, contained sulfonated poly(ether ether ketone), SPEEK, a rigid polyelectrolyte which binds strongly to a selection of quaternary ammonium polycations. Layer-by-layer buildup of SPEEK and polycations was linear, indicating strong complexes between polyelectrolytes. Calorimetry also showed complex formation was exothermic. Surfaces coated with these films in the 100 nm thickness range completely resisted adhesion of the common flagellate green algae, Chlamydomonas reinhardtii which were removed from surfaces at the minimum applied flow rate of 0.8 cm s-1. The total surface charge density of adsorbed cations, determined with a sensitive radioisotopic label, was very low, around 10% of a monolayer, which minimized adsorption driven by counterion release from the surface. The viscoelastic properties of the complexes, which were stable even in concentrated salt solutions, were explored using rheology of bulk samples. When fully hydrated, their Tgs were observed to be above 75 oC.more » « less
-
Abstract Wound closure in surgeries is traditionally achieved using invasive methods such as sutures and staples. Adhesion‐based wound closure methods such as tissue adhesives, sealants, and hemostats are slowly replacing these methods due to their ease of application. Although several chemistries have been developed and used commercially for wound closure, there is still a need for better tissue adhesives from the point of view of toxicity, wet‐adhesion strength, and long‐term bonding. Catechol chemistry has shown great promise in developing wet‐set adhesives that meet these criteria. Herein, we have studied the biocompatibility of a catechol‐based copolymer adhesive, poly([dopamine methacrylamide]‐co‐[methyl methacrylate]‐co‐[poly(ethylene glycol) methyl ether methacrylate]) or poly(catechol‐MMA‐OEG), which is soluble in water. The adhesive was injected subcutaneously in a mouse model on its own and in combination with a sodium periodate crosslinker. After 72 h, 4 weeks, and 12 weeks, the mice were euthanized and subjected to histopathological analysis. Both adhesives were present and still palpable at the end of 12 weeks. The moderate inflammation observed for the poly(catechol‐MMA‐OEG) cohort at 72 h had reduced to mild inflammation at the end of 12 weeks. However, the moderate inflammatory response observed for the poly(catechol‐MMA‐OEG) + crosslinker cohort at 72 h had not subsided at 12 weeks.more » « less
-
Self-Assembled Monolayer Coatings on Gold and Silica Surfaces for Antifouling Applications: A ReviewThe resistance of surfaces to biomaterial adsorption/adhesion is paramount for advancing marine and biomedical industries. A variety of approaches that involve bioinert materials have been developed to modify surfaces. Self-assembled monolayers (SAMs) are powerful platforms in which the surface composition is easily fabricated and a well-defined structure is provided; thus, the molecular-level interaction between biomolecules/biofoulants and the surface can be understood. In this review, we describe a wide variety of SAM structures on gold and silica surfaces for antifouling applications and the corresponding mechanism of nonfouling surfaces. Our analysis divides the surface properties of films into the following types: (1) hydrophilic, (2) hydrophobic, and (3) amphiphilic films.more » « less
An official website of the United States government

