skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large deviations of bivariate Gaussian extrema
Abstract We establish sharp tail asymptotics for componentwise extreme values of bivariate Gaussian random vectors with arbitrary correlation between the components. We consider two scaling regimes for the tail event in which we demonstrate the existence of a restricted large deviations principle and identify the unique rate function associated with these asymptotics. Our results identify when the maxima of both coordinates are typically attained by two different versus the same index, and how this depends on the correlation between the coordinates of the bivariate Gaussian random vectors. Our results complement a growing body of work on the extremes of Gaussian processes. The results are also relevant for steady-state performance and simulation analysis of networks of infinite server queues.  more » « less
Award ID(s):
1636069
PAR ID:
10308781
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Queueing Systems
Volume:
93
Issue:
3-4
ISSN:
0257-0130
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. Whereas large deviation principles identify the asymptotic exponential decay rate of probabilities, sharp large deviation estimates also provide the “prefactor” in front of the exponentially decaying term. For fixed p ∈ (1, ∞), consider independent sequences (X(n,p))_{n∈N} and (Θ_n)_{n∈N} of random vectors with Θn distributed according to the normalized cone measure on the unit l^n_2 sphere, and X(n,p) distributed according to the normalized cone measure on the unit lnp sphere. For almost every realization (θn)_{n∈N} of (Θ_n)_{n∈N}, (quenched) sharp large deviation estimates are established for suitably normalized (scalar) projections of X(n,p) onto θ_n, that are asymptotically exact (as the dimension n tends to infinity). Furthermore, the case when (X(n,p))_{n∈N} is replaced with (X(n,p))_{n∈N}, where X(n,p) is distributed according to the uniform (or normalized volume) measure on the unit lnp ball, is also considered. In both cases, in contrast to the (quenched) large deviation rate function, the prefactor exhibits a dependence on the projection directions (θ_n)_{n∈N} that encodes additional geometric information that enables one to distinguish between projections of balls and spheres. Moreover, comparison with numerical estimates obtained by direct computation and importance sampling shows that the obtained analytical expressions for tail probabilities provide good approximations even for moderate values of n. The results on the one hand provide more accurate quantitative estimates of tail probabilities of random projections of \ell^n_p spheres than logarithmic asymptotics, and on the other hand, generalize classical sharp large deviation estimates in the spirit of Bahadur and Ranga Rao to a geometric setting. The proofs combine Fourier analytic and probabilistic techniques. Along the way, several results of independent interest are obtained including a simpler representation for the quenched large deviation rate function that shows that it is strictly convex, a central limit theorem for random projections under a certain family of tilted measures, and multidimensional generalized Laplace asymptotics. 
    more » « less
  2. We develop a quantitative large deviations theory for random hypergraphs, which rests on tensor decomposition and counting lemmas under a novel family of cut-type norms. As our main application, we obtain sharp asymptotics for joint upper and lower tails of homomorphism counts in the r-uniform Erdo ̋s–Rényi hypergraph for any fixed r≥2, generalizing and improving on previous results for the Erdo ̋s–Rényi graph (r=2). The theory is sufficiently quantitative to allow the density of the hypergraph to vanish at a polynomial rate, and additionally yields tail asymptotics for other nonlinear functionals, such as induced homomorphism counts. 
    more » « less
  3. We study the problem of sparse signal detection on a spatial domain. We propose a novel approach to model continuous signals that are sparse and piecewise-smooth as the product of independent Gaussian (PING) processes with a smooth covariance kernel. The smoothness of the PING process is ensured by the smoothness of the covariance kernels of the Gaussian components in the product, and sparsity is controlled by the number of components. The bivariate kurtosis of the PING process implies that more components in the product results in the thicker tail and sharper peak at zero. We develop an efficient computation algorithm based on spectral methods. The simulation results demonstrate superior estimation using the PING prior over Gaussian process prior for different image regressions. We apply our method to a longitudinal magnetic resonance imaging dataset to detect the regions that are affected by multiple sclerosis computation in this domain. Supplementary materials for this article are available online. 
    more » « less
  4. Abstract In recent years, significant attention in deep learning theory has been devoted to analyzing when models that interpolate their training data can still generalize well to unseen examples. Many insights have been gained from studying models with multiple layers of Gaussian random features, for which one can compute precise generalization asymptotics. However, few works have considered the effect of weight anisotropy; most assume that the random features are generated using independent and identically distributed Gaussian weights, and allow only for structure in the input data. Here, we use the replica trick from statistical physics to derive learning curves for models with many layers of structured Gaussian features. We show that allowing correlations between the rows of the first layer of features can aid generalization, while structure in later layers is generally detrimental. Our results shed light on how weight structure affects generalization in a simple class of solvable models. 
    more » « less
  5. Let (kn)n∈N be a sequence of positive integers growing to infinity at a sublinear rate, kn → ∞ and kn/n → 0 as n → ∞. Given a sequence of n-dimensional random vectors {Y (n)}n∈N belonging to a certain class, which includes uniform distributions on suitably scaled ℓnp -balls or ℓnp -spheres, p ≥ 2, and product distributions with sub-Gaussian marginals, we study the large deviations behavior of the corresponding sequence of kn-dimensional orthogonal projections. For almost every sequence of projection matrices, we establish a large deviation principle (LDP) for the corresponding sequence of projections, with a fairly explicit rate function that does not depend on the sequence of projection matrices. As corollaries, we also obtain quenched LDPs for sequences of ℓ2-norms and ℓ∞-norms of the coordinates of the projections. Past work on LDPs for projections with growing dimension has mainly focused on the annealed setting, where one also averages over the random projection matrix, chosen from the Haar measure, in which case the coordinates of the projection are exchangeable. The quenched setting lacks such symmetry properties, and gives rise to significant new challenges in the setting of growing projection dimension. Along the way, we establish new Gaussian approximation results on the Stiefel manifold that may be of independent interest. Such LDPs are of relevance in asymptotic convex geometry, statistical physics and high-dimensional statistics. 
    more » « less