skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Expanding reversible chalcogenide binding: supramolecular receptors for the hydroselenide (HSe − ) anion
Synthetic supramolecular receptors have been widely used to study reversible solution binding of anions; however, few systems target highly-reactive species. In particular, the hydrochalcogenide anions hydrosulfide (HS − ) and hydroselenide (HSe − ) have been largely overlooked despite their critical roles in biological systems. Herein we present the first example of reversible HSe − binding in two distinct synthetic supramolecular receptors, using hydrogen bonds from N–H and aromatic C–H moieties. The arylethynyl bisurea scaffold 1tBu achieved a binding affinity of 460 ± 50 M −1 for HSe − in 10% DMSO- d 6 /CD 3 CN, whereas the tripodal-based receptor 2CF3 achieved a binding affinity of 290 ± 50 M −1 in CD 3 CN. Association constants were also measured for HS − , Cl − , and Br − , and both receptors favored binding of smaller, more basic anions. These studies contribute to a better understanding of chalcogenide hydrogen bonding and provide insights into further development of probes for the reversible binding, and potential quantification, of HSe − and HS − .  more » « less
Award ID(s):
1625529
PAR ID:
10309019
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
1
ISSN:
2041-6520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We highlight a convenient synthesis to selectively deuterate an aryl C–H hydrogen bond donor in an arylethynyl bisurea supramolecular anion receptor and use the Perrin method of competitive titrations to study the deuterium equilibrium isotope effects (DEIE) of anion binding for HS − , Cl − , and Br − . This work highlights the utility and also challenges in using this method to determine EIE with highly reactive and/or weakly binding anions. 
    more » « less
  2. Abstract Achieving selective molecular recognition of hydrophilic anions in water remains a formidable challenge due to the competitive nature of water and the high hydration energies of target anions such as sulfate. Here, we report the design, synthesis, and characterization of a simple dicationic tetralactam macrocycle (BPTL2⁺·2Cl⁻) capable of binding highly hydrated anions in water via charge‐assisted hydrogen bonding. Structural, spectroscopic, thermodynamic, and computational studies reveal that BPTL2⁺ exhibits a strong binding affinity for sulfate (Ka = 2892 M⁻¹), driven primarily by entropic gain from water release and reinforced by electrostatic and hydrogen bonding interactions. Single‐crystal X‐ray diffraction and DFT‐optimized structures confirm the formation of directional [N─H•••O] and [C─H•••O] hydrogen bonds. Comparative studies with a control macrocycle (6Na+•HCTL6−) that has a charge‐neutral binding cavity underscore the essential role of cationic charge in overcoming desolvation enthalpic penalties. The receptor displays anti‐Hofmeister selectivity, preferentially binding more hydrophilic anions. This work provides fundamental insights into the mechanisms of anion recognition in water. It establishes charge‐assisted hydrogen bonding as a powerful strategy for developing next‐generation receptors for sensing, separation, sequestration, transport, and catalysis in aqueous environments. 
    more » « less
  3. The complex distribution of functional groups in carbohydrates, coupled with their strong solvation in water, makes them challenging targets for synthetic receptors. Despite extensive research into various molecular frameworks, most synthetic carbohydrate receptors have exhibited low affinities, and their interactions with sugars in aqueous environments remain poorly understood. In this work, we present a simple pyridinium-based hydrogen-bonding receptor derived from a subtle structural modification of a well-known tetralactam macrocycle. This small structural change resulted in a dramatic enhancement of glucose binding affinity, increasing from 56 M−1 to 3001 M−1. Remarkably, the performance of our synthetic lectin surpasses that of the natural lectin, concanavalin A, by over fivefold. X-ray crystallography of the macrocycle–glucose complex reveals a distinctive hydrogen bonding pattern, which allows for a larger surface overlap between the receptor and glucose, contributing to the enhanced affinity. Furthermore, this receptor possesses allosteric binding sites, which involve chloride binding and trigger receptor aggregation. This unique allosteric process reveals the critical role of structural flexibility in this hydrogen-bonding receptor for the effective recognition of sugars. We also demonstrate the potential of this synthetic lectin as a highly sensitive glucose sensor in aqueous solutions. 
    more » « less
  4. Abstract CTEA (N,N‐bis[2‐(carboxylmethyl)thioethyl]amine) is a mixed donor ligand that has been incorporated into multiple fluorescent sensors such as NiSensor‐1 that was reported to be selective for Ni2+. Other metal ions such as Zn2+do not produce an emission response in aqueous solution. To investigate the coordination chemistry and selectivity of this receptor, we prepared NiCast, a photocage containing the CTEA receptor. Cast photocages undergo a photoreaction that decreases electron density on a metal‐bound aniline nitrogen atom, which shifts the binding equilibrium toward unbound metal ion. The unique selectivity of CTEA was examined by measuring the binding affinity of NiCast and the CTEA receptor for Ni2+, Zn2+, Cd2+and Cu2+under different conditions. In aqueous solution, Ni2+binds more strongly to the aniline nitrogen atom than Cd2+; however, in CH3CN, the change in affinity virtually disappears. The crystal structure of [Cu(CTEA)], which exhibits a Jahn–Teller–distorted square pyramidal structure, was also analyzed to gain more insight into the underlying coordination chemistry. These studies suggest that the fluorescence selectivity of NiSensor‐1 in aqueous solution is due to a stronger interaction between the aniline nitrogen atom and Ni2+compared to other divalent metal ions except Cu2+
    more » « less
  5. Selective binding and transport of highly hydrophilic anions is ubiquitous in nature, as anion binding proteins can differentiate between similar anions with over a million-fold efficiency. While comparable selectivity has occasionally been achieved for certain anions using small, artificial receptors, the selective binding of certain anions, such as sulfate in the presence of carbonate, remains a very challenging task. Nanojars of the formula [anion⊂{Cu(OH)(pz)} n ] 2− (pz = pyrazolate; n = 27–33) are totally selective for either CO 3 2− or SO 4 2− over anions such as NO 3 − , ClO 4 − , BF 4 − , Cl − , Br − and I − , but cannot differentiate between the two. We hypothesized that rigidification of the nanojar outer shell by tethering pairs of pyrazole moieties together will restrict the possible orientations of the OH hydrogen-bond donor groups in the anion-binding cavity of nanojars, similarly to anion-binding proteins, and will lead to selectivity. Indeed, by using either homoleptic or heteroleptic nanojars of the general formula [anion⊂Cu n (OH) n (L2–L6) y (pz) n −2 y ] 2− ( n = 26–31) based on a series of homologous ligands HpzCH 2 (CH 2 ) x CH 2 pzH ( x = 0–4; H 2 L2–H 2 L6), selectivity for carbonate (with L2 and with L4–L6/pz mixtures) or for sulfate (with L3) has been achieved. The synthesis of new ligands H 2 L3, H 2 L4 and H 2 L5, X-ray crystal structures of H 2 L4 and the tetrahydropyranyl-protected derivatives (THP) 2 L4 and (THP) 2 L5, synthesis and characterization by electrospray-ionization mass spectrometry (ESI-MS) of carbonate- and sulfate-nanojars derived from ligands H 2 L2–H 2 L6, as well as detailed selectivity studies for CO 3 2− vs. SO 4 2− using these novel nanojars are presented. 
    more » « less