skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Organic Semiconductors Derived from Dinaphtho-Fused s -Indacenes: How Molecular Structure and Film Morphology Influence Thin-Film Transistor Performance
Award ID(s):
1625529
PAR ID:
10309027
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Chemistry of Materials
Volume:
31
Issue:
17
ISSN:
0897-4756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Since the 1960s, thicknesses and compositions of thin-film specimens have been determined by using the nondestructive technique of electron probe microanalysis. This approach, refined in the 1990s, is based upon models of the ionization depth distribution, the so-called ϕ ( ρz ) distribution, and is capable of analyzing layered specimens. Most of these quantification models have led to commercial programs. However, these programs may have possible limitations: some may not be directly compatible with modern computers, they often are “black boxes” making it difficult to assess the reliability of the results, and they are sometimes expensive enough to restrain many labs from purchasing them. We present a user-friendly, free, open-source program, BadgerFilm, implementing a documented ϕ ( ρz ) model and algorithms allowing the quantification of stratified samples. The program has the ability to calculate absolute X-ray intensities that can be directly compared with Monte Carlo simulations. We give a detailed explanation for the operation of the employed ϕ ( ρz ) model in thin films. A wide range of detailed Monte Carlo simulations and experimental data have been used to evaluate and validate the accuracy of the implemented algorithms. BadgerFilm demonstrated excellent quantification results for the films and in many cases for the substrates. 
    more » « less
  2. Electrodeposited Cu–Sb thin films on Cu and Ni substrates are investigated as alloy anodes for Li-ion batteries to elucidate the effects of both the film composition and substrate interactions on anode cycling stability and lifetime. Thin films of composition Cu x Sb (0 < x < 2) exhibit the longest cycle lifetimes nearest x = 1. Additionally, the Cu–Sb films exhibit shorter cycle lifetimes when electrodeposited onto Cu substrates when compared to equivalent films on Ni substrates. Ex situ characterization and differential capacity analysis of the anodes reveal that significant interdiffusion occurs during cycling between pure Sb films and Cu substrates. The great extent of interdiffusion results in mechanical weakening of the film–substrate interface that exacerbates film delamination and decreases cycle lifetimes of Cu–Sb films on Cu substrates regardless of the film's composition. The results presented here demonstrate that the composition of the anode alone is not the most important predictor of long term cycle stability; the composition coupled with the identity of the substrate is key. These interactions are critical to understand in the design of high capacity, large volume change materials fabricated without the need for additional binders. 
    more » « less
  3. The recent emergence of thin-film lithium niobate (TFLN) has extended the landscape of integrated photonics. This has been enabled by the commercialization of TFLN wafers and advanced nanofabrication of TFLN such as high-quality dry etching. However, fabrication imperfections still limit the propagation loss to a few dB/m, restricting the impact of this platform. Here, we demonstrate TFLN microresonators with a record-high intrinsic quality (Q) factor of twenty-nine million, corresponding to an ultra-low propagation loss of 1.3 dB/m. We present spectral analysis and the statistical distribution ofQfactors across different resonator geometries. Our work pushes the fabrication limits of TFLN photonics to achieve aQfactor within 1 order of magnitude of the material limit. 
    more » « less