Current potentiometric sensing methods are limited to detecting nitrate at parts-per-billion (sub-micromolar) concentrations, and there are no existing potentiometric chemical sensors with ultralow detection limits below the parts-per-trillion (picomolar) level. To address these challenges, we integrate interdigital graphene ion-sensitive field-effect transistors (ISFETs) with a nitrate ion-sensitive membrane (ISM). The work aims to maximize nitrate ion transport through the nitrate ISM, while achieving high device transconductance by evaluating graphene layer thickness, optimizing channel width-to-length ratio (
- Award ID(s):
- 1757117
- PAR ID:
- 10309116
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract R WL), and enlarging total sensing area. The captured nitrate ions by the nitrate ISM induce surface potential changes that are transduced into electrical signals by graphene, manifested as the Dirac point shifts. The device exhibits Nernst response behavior under ultralow concentrations, achieving a sensitivity of 28 mV/decade and establishing a record low limit of detection of 0.041 ppt (4.8 × 10−13M). Additionally, the sensor showed a wide linear detection range from 0.1 ppt (1.2 × 10−12M) to 100 ppm (1.2 × 10−3M). Furthermore, successful detection of nitrate in tap and snow water was demonstrated with high accuracy, indicating promising applications to drinking water safety and environmental water quality control. -
Abstract Sensing of viral antigens has become a critical tool in combating infectious diseases. Current sensing techniques have a tradeoff between sensitivity and time of detection; with 10–30 min of detection time at a relatively low sensitivity and 6–12 h of detection at a high (picomolar) sensitivity. In this research, uniquely nanoengineered interfaces are demonstrated on 3D electrodes that enable the detection of spike antigens of SARS‐CoV‐2 and their variants in seconds at femtomolar concentrations with excellent specificity, thus, overcoming this tradeoff. The 3D electrodes, manufactured using a high‐resolution aerosol jet 3D nanoprinter, consist of a microelectrode array of sintered gold nanoparticles coated with graphene and antibodies specific to severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) spike antigens. An impedance‐based sensing modality is employed to sense several pseudoviruses of SARS‐CoV‐2 variants of concern (VOCs). This device is sensitive to most of the pseudoviruses of SARS‐CoV‐2 VOCs. A high sensitivity of 100 f
m , along with a low limit‐of‐detection of 9.2 fm within a test range of 0.1–1000 pm , and a detection time of 43 s are shown. This work illustrates that effective nano‐bioengineering of interfaces can be used to create an ultrafast and ultrasensitive healthcare diagnostic tool for combating emerging infections. -
Abstract Field-effect transistor (FET)-based biosensors allow label-free detection of biomolecules by measuring their intrinsic charges. The detection limit of these sensors is determined by the Debye screening of the charges from counter ions in solutions. Here, we use FETs with a deformed monolayer graphene channel for the detection of nucleic acids. These devices with even millimeter scale channels show an ultra-high sensitivity detection in buffer and human serum sample down to 600 zM and 20 aM, respectively, which are ∼18 and ∼600 nucleic acid molecules. Computational simulations reveal that the nanoscale deformations can form ‘electrical hot spots’ in the sensing channel which reduce the charge screening at the concave regions. Moreover, the deformed graphene could exhibit a band-gap, allowing an exponential change in the source-drain current from small numbers of charges. Collectively, these phenomena allow for ultrasensitive electronic biomolecular detection in millimeter scale structures.
-
Abstract Wearable piezoresistive sensors are being developed as electronic skins (E‐skin) for broad applications in human physiological monitoring and soft robotics. Tactile sensors with sufficient sensitivities, durability, and large dynamic ranges are required to replicate this critical component of the somatosensory system. Multiple micro/nanostructures, materials, and sensing modalities have been reported to address this need. However, a trade‐off arises between device performance and device complexity. Inspired by the microstructure of the spinosum at the dermo epidermal junction in skin, a low‐cost, scalable, and high‐performance piezoresistive sensor is developed with high sensitivity (0.144 kPa‐1), extensive sensing range ( 0.1–15 kPa), fast response time (less than 150 ms), and excellent long‐term stability (over 1000 cycles). Furthermore, the piezoresistive functionality of the device is realized via a flexible transparent electrode (FTE) using a highly stable reduced graphene oxide self‐wrapped copper nanowire network. The developed nanowire‐based spinosum microstructured FTEs are amenable to wearable electronics applications.
-
null (Ed.)Graphene has proven to be useful in biosensing applications. However, one of the main hurdles with printed graphene-based electrodes is achieving repeatable electrochemical performance from one printed electrode to another. We have developed a consistent fabrication process to control the sheet resistance of inkjet-printed graphene electrodes, thereby accomplishing repeatable electrochemical performance. Herein, we investigated the electrochemical properties of multilayered graphene (MLG) electrodes fully inkjet-printed (IJP) on flexible Kapton substrates. The electrodes were fabricated by inkjet printing three materials – (1) a conductive silver ink for electrical contact, (2) an insulating dielectric ink, and (3) MLG ink as the sensing material. The selected materials and fabrication methods provided great control over the ink rheology and material deposition, which enabled stable and repeatable electrochemical response: bending tests revealed the electrochemical behavior of these sensors remained consistent over 1000 bend cycles. Due to the abundance of structural defects ( e.g. , edge defects) present in the exfoliated graphene platelets, cyclic voltammetry (CV) of the graphene electrodes showed good electron transfer ( k = 1.125 × 10 −2 cm s −1 ) with a detection limit (0.01 mM) for the ferric/ferrocyanide redox couple, [Fe(CN) 6 ] −3/−4 , which is comparable or superior to modified graphene or graphene oxide-based sensors. Additionally, the potentiometric response of the electrodes displayed good sensitivity over the pH range of 4–10. Moreover, a fully IJP three-electrode device (MLG, platinum, and Ag/AgCl) also showed quasi-reversibility compared to a single IJP MLG electrode device. These findings demonstrate significant promise for scalable fabrication of a flexible, low cost, and fully-IJP wearable sensor system needed for space, military, and commercial biosensing applications.more » « less