Abstract The Milky Way (MW) stellar disk has both a thin and a thick component. The thin disk is composed mostly of younger stars (≲8 Gyr) with a lower abundance ofα-elements, while the thick disk contains predominantly older stars (≳8–12 Gyr) with a higherαabundance, giving rise to anα-bimodality most prominent at intermediate metallicities. A proposed explanation for the bimodality is an episode of clumpy star formation, where high-αstars form in massive clumps that appear in the first few billion years of the MW’s evolution, while low-αstars form throughout the disk and over a longer time span. To better understand the evolution of clumps, we track them and their constituent stars in two clumpy MW simulations that reproduce theα-abundance bimodality, one with 10% and the other with 20% supernova feedback efficiency. We investigate the paths that these clumps take in the chemical space ([O/Fe]–[Fe/H]) as well as their mass, star formation rate (SFR), formation location, lifetime, and merger history. The clumps in the simulation with lower feedback last longer on average, with several lasting hundreds of millions of years. Some of the clumps do not reach high-α, but the ones that do on average have a higher SFR, longer lifetime, greater mass, and form closer to the Galactic center than the ones that do not. Most clumps that reach high-αmerge with others and eventually spiral into the Galactic center, but shed stars along the way to form most of the thick-disk component.
more »
« less
Spin and Accretion Rate Dependence of Black Hole X-Ray Spectra
Abstract We present a survey of how the spectral features of black hole X-ray binary systems depend on spin, accretion rate, viewing angle, and Fe abundance when predicted on the basis of first-principles physical calculations. The power-law component hardens with increasing spin. The thermal component strengthens with increasing accretion rate. The Compton bump is enhanced by higher accretion rate and lower spin. The Fe K α equivalent width grows sublinearly with Fe abundance. Strikingly, the K α profile is more sensitive to accretion rate than to spin because its radial surface brightness profile is relatively flat, and higher accretion rate extends the production region to smaller radii. The overall radiative efficiency is at least 30%–100% greater than as predicted by the Novikov–Thorne model.
more »
« less
- PAR ID:
- 10309237
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 922
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Type Ia supernovae (SNe Ia) produce most of the Fe-peak elements in the Universe and therefore are a crucial ingredient in galactic chemical evolution models. SNe Ia do not explode immediately after star formation, and the delay-time distribution (DTD) has not been definitively determined by supernova surveys or theoretical models. Because the DTD also affects the relationship among age, [Fe/H], and [α/Fe] in chemical evolution models, comparison with observations of stars in the Milky Way is an important consistency check for any proposed DTD. We implement several popular forms of the DTD in combination with multiple star formation histories for the Milky Way in multizone chemical evolution models that include radial stellar migration. We compare our predicted interstellar medium abundance tracks, stellar abundance distributions, and stellar age distributions to the final data release of the Apache Point Observatory Galactic Evolution Experiment. We find that the DTD has the largest effect on the [α/Fe] distribution: a DTD with more prompt SNe Ia produces a stellar abundance distribution that is skewed toward a lower [α/Fe] ratio. While the DTD alone cannot explain the observed bimodality in the [α/Fe] distribution, in combination with an appropriate star formation history it affects the goodness of fit between the predicted and observed high-αsequence. Our model results favor an extended DTD with fewer prompt SNe Ia than the fiducialt−1power law.more » « less
-
The acetylperoxy + HO 2 reaction has multiple impacts on the troposphere, with a triplet pathway leading to peracetic acid + O 2 (reaction (1a)) competing with singlet pathways leading to acetic acid + O 3 (reaction (1b)) and acetoxy + OH + O 2 (reaction (1c)). A recent experimental study has reported branching fractions for these three pathways ( α 1a , α 1b , and α 1c ) from 229 K to 294 K. We constructed a theoretical model for predicting α 1a , α 1b , and α 1c using quantum chemical and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) simulations. Our main quantum chemical method was Weizmann-1 Brueckner Doubles (W1BD) theory; we combined W1BD and equation-of-motion spin-flip coupled cluster (SF) theory to treat open-shell singlet structures. Using RRKM/ME simulations that included all conformers of acetylperoxy–HO 2 pre-reactive complexes led to a 298 K triplet rate constant, k 1a = 5.11 × 10 −12 cm 3 per molecule per s, and values of α 1a in excellent agreement with experiment. Increasing the energies of all singlet structures by 0.9 kcal mol −1 led to a combined singlet rate constant, k 1b+1c = 1.20 × 10 −11 cm 3 per molecule per s, in good agreement with experiment. However, our predicted variations in α 1b and α 1c with temperature are not nearly as large as those measured, perhaps due to the inadequacy of SF theory in treating the transition structures controlling acetic acid + O 3 formation vs. acetoxy + OH + O 2 formation.more » « less
-
ABSTRACT The Milky Way underwent its last significant merger ten billion years ago, when the Gaia-Enceladus-Sausage (GES) was accreted. Accreted GES stars and progenitor stars born prior to the merger make up the bulk of the inner halo. Even though these two main populations of halo stars have similar durations of star formation prior to their merger, they differ in [α/Fe]-[Fe/H] space, with the GES population bending to lower [α/Fe] at a relatively low value of [Fe/H]. We use cosmological simulations of a ‘Milky Way’ to argue that the different tracks of the halo stars through the [α/Fe]-[Fe/H] plane are due to a difference in their star formation history and efficiency, with the lower mass GES having its low and constant star formation regulated by feedback whilst the higher mass main progenitor has a higher star formation rate prior to the merger. The lower star formation efficiency of GES leads to lower gas pollution levels, pushing [α/Fe]-[Fe/H] tracks to the left. In addition, the increasing star formation rate maintains a higher relative contribution of Type II SNe to Type Ia SNe for the main progenitor population that formed during the same time period, thus maintaining a relatively high [α/Fe]. Thus the different positions of the downturns in the [α/Fe]-[Fe/H] plane for the GES stars are not reflective of different star formation durations, but instead reflect different star formation efficiencies.more » « less
-
Abstract While the Milky Way nuclear star cluster (MW NSC) has been studied extensively, how it formed is uncertain. Studies have shown it contains a solar and supersolar metallicity population that may have formed in situ, along with a subsolar-metallicity population that may have formed via mergers of globular clusters and dwarf galaxies. Stellar abundance measurements are critical to differentiate between formation scenarios. We present new measurements of [M/H] and α -element abundances [ α /Fe] of two subsolar-metallicity stars in the Galactic center. These observations were taken with the adaptive-optics-assisted high-resolution ( R = 24,000) spectrograph NIRSPEC in the K band (1.8–2.6 micron). These are the first α -element abundance measurements of subsolar-metallicity stars in the MW NSC. We measure [M/H] = − 0.59 ± 0.11, [ α /Fe] = 0.05 ± 0.15 and [M/H] = − 0.81 ± 0.12, [ α /Fe] = 0.15 ± 0.16 for the two stars at the Galactic center; the uncertainties are dominated by systematic uncertainties in the spectral templates. The stars have an [ α /Fe] in between the [ α /Fe] of globular clusters and dwarf galaxies at similar [M/H] values. Their abundances are very different than the bulk of the stars in the nuclear star cluster. These results indicate that the subsolar-metallicity population in the MW NSC likely originated from infalling dwarf galaxies or globular clusters and are unlikely to have formed in situ.more » « less
An official website of the United States government

