skip to main content


Title: Summer extreme cyclone impacts on Arctic sea ice
Abstract In this study the impact of extreme cyclones on Arctic sea ice in summer is investigated. Examined in particular are relative thermodynamic and dynamic contributions to sea ice volume budgets in the vicinity of Arctic summer cyclones in 2012 and 2016. Results from this investigation illustrate sea ice loss in the vicinity of the cyclone trajectories during each year were associated with different dominant processes: thermodynamic (melting) in the Pacific sector of the Arctic in 2012, and both thermodynamic and dynamic processes in the Pacific sector of the Arctic in 2016. Comparison of both years further suggests that the Arctic minimum sea ice extent is influenced by not only the strength of the cyclone, but also by the timing and location relative to the sea ice edge. Located near the sea ice edge in early August in 2012, and over the central Arctic later in August in 2016, extreme cyclones contributed to comparable sea ice area (SIA) loss, yet enhanced sea ice volume loss in 2012 relative to 2016. Central to a characterization of extreme cyclone impacts on Arctic sea ice from the perspective of thermodynamic and dynamic processes, we present an index describing relative thermodynamic and dynamic contributions to sea ice volume changes. This index helps to quantify and improve our understanding of initial sea ice state and dynamical responses to cyclones in a rapidly warming Arctic, with implications for seasonal ice forecasting, marine navigation, coastal community infrastructure and designation of protected and ecologically sensitive marine zones.  more » « less
Award ID(s):
1748325
PAR ID:
10309324
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In recent decades, the Arctic minimum sea ice extent has transitioned from a predominantly thick multiyear ice cover to a thinner seasonal ice cover. We partition the total (observed) Arctic summer area loss into thermodynamic and dynamic (convergence, ridging, and export) sea ice area loss during the satellite era from 1979 to 2021 using a Lagrangian sea ice tracking model driven by satellite-derived sea ice velocities. Results show that the thermodynamic signal dominates the total summer ice area loss and the dynamic signal remains small (∼20%) even in 2007 when dynamic loss was largest. Sea ice loss by compaction (within pack ice convergence) dominates the dynamic area loss, even in years when the export is largest. Results from a simple (Ekman) free-drift sea ice model, supported by results from the Lagrangian model, suggest that nonlinear effects between dynamic and thermodynamic area loss can be important for large negative anomalies in sea ice extent, in accord with previous modeling studies. A detailed analysis of two all-time record minimum years (2007 and 2012)—one with a semipermanent high in the southern Beaufort Sea and the other with a short-lived but extreme storm in the Pacific sector of the Arctic in late summer—shows that compaction by Ekman convergence together with large thermodynamic melt in the marginal ice zone dominated the sea ice area loss in 2007 whereas, in 2012, it was dominated by Ekman divergence amplified by sea–ice albedo feedback—together with an early melt onset. We argue that Ekman divergence from more intense summer storms when the sun is high above the horizon is a more likely mechanism for a “first-time” ice-free Arctic.

     
    more » « less
  2. Abstract

    The Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) can influence Arctic sea ice and modulate its trend, but to what extent the AMV and PMV can affect Arctic sea ice and which processes are dominant are not well understood. Here, we analyze the Community Earth System Model, version 1, idealized and time-varying pacemaker ensemble simulations to investigate these issues. These experiments show that the sea ice concentration varies mainly over the marginal Arctic Ocean, while the sea ice thickness variations occur over the entire Arctic Ocean. The internal components of AMV and PMV can enhance or weaken the decadal sea ice loss rates over the marginal Arctic Ocean by more than 50%. The AMV- or PMV-induced anomalous atmospheric energy transport and downward longwave radiation related to low clouds (thermodynamical processes) and sea ice motion (dynamical processes) contribute to the Arctic surface air temperature and sea ice concentration and thickness changes. Anomalous oceanic heat flux is mainly a response to rather than a cause of sea ice variations. The dynamic processes contribute to the winter Arctic sea ice variations as much as the thermodynamic processes, but they contribute less (more) to the summer Arctic sea ice variability than the thermodynamic processes over the marginal Arctic Ocean (parts of the central Arctic Ocean). Sea ice loss enhances air–sea heat fluxes, which cause oceanic heat convergence and warm near-surface air and the lower troposphere, which in turn melt more sea ice.

     
    more » « less
  3. null (Ed.)
    We explore the response of wintertime Arctic sea ice growth to strong cyclones and to large-scale circulation patterns on the daily scale using Earth system model output in phase 5 of the Coupled Model Intercomparison Project (CMIP5). A combined metrics ranking method selects three CMIP5 models that are successful in reproducing the wintertime Arctic dipole (AD) pattern. A cyclone identification method is applied to select strong cyclones in two subregions in the North Atlantic to examine their different impacts on sea ice growth. The total change of sea ice growth rate (SGR) is split into those respectively driven by the dynamic and thermodynamic atmospheric forcing. Three models reproduce the downward longwave radiation anomalies that generally match thermodynamic SGR anomalies in response to both strong cyclones and large-scale circulation patterns. For large-scale circulation patterns, the negative AD outweighs the positive Arctic Oscillation in thermodynamically inhibiting SGR in both impact area and magnitude. Despite the disagreement on the spatial distribution, the three CMIP5 models agree on the weaker response of dynamic SGR than thermodynamic SGR. As the Arctic warms, the thinner sea ice results in more ice production and smaller spatial heterogeneity of thickness, dampening the SGR response to the dynamic forcing. The higher temperature increases the specific heat of sea ice, thus dampening the SGR response to the thermodynamic forcing. In this way, the atmospheric forcing is projected to contribute less to change daily SGR in the future climate. 
    more » « less
  4. null (Ed.)
    Each Arctic summer since 2008, the Sea Ice Outlook (SIO) has invited researchers and the engaged public to contribute predictions regarding the September extent of Arctic sea ice. Then, each September, we see the accuracy or inaccuracy of those predictions. More than 1,000 individual predictions, based on many different methods, were contributed from 2008 to 2020. Earlier papers analyzed the ensemble skill of the first few hundred SIO contributions through 2013 ( Stroeve et al. 2014) and through 2015 ( Hamilton & Stroeve 2016). Here, I bring those analyses up to date with data through 2020. The main conclusions from earlier papers have proven to be robust, but unexpected new insights emerged as well. The long term downward trend in ice extent is reasonably well described as linear (R2 = 0.79) or quadratic (R2 = 0.81). Very large changes from the previous year’s extent in 2012 and 2013 resulted in the largest prediction errors. Both errors reflect one 2012 cyclone. For reasons not yet understood, SIO predictions especially those from dynamic modeling predict the previous year’s extent rather than the current year. 
    more » « less
  5. Abstract

    Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.

     
    more » « less