skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: A Redesigned Reconstruction Kit for Rapid Collaborative Debugging and Designing of E-Textiles
In this paper, we present an iteration on a “reconstruction kit” for e-textiles, a flexible-state construction kit that allows for rapid deconstruction and reconstruction of sewn, programmable circuits. The reconstruction kit was redesigned to be more modular and was tested in more computationally and spatially challenging debugging and design situations. by four pairs of˛ students familiar with e-textiles taking an introductory computer science course in a U.S. high school. Analyzing think-aloud protocols of the four sessions, we examined affordances and limitations of how student debugged and designed with the reconstruction kit and in which ways collaborative interactions were supported.  more » « less
Award ID(s):
1742140
PAR ID:
10309410
Author(s) / Creator(s):
 ;  ;  ;  
Date Published:
Journal Name:
Proceedings of the 9th Annual Conference on Maker Education (FabLearn '20)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we present the development of a "reconstruction kit" for e-textiles, which transforms fixed-state construction kits---maker tools and technologies that focus on the creation of semi-permanent projects---into flex-state construction kits that allow for endless deconstruction and reconstruction. The kit uses modular pieces that allow students to both solve and create troubleshooting and debugging challenges, which we call "DebugIts." We tested our prototype in an after-school workshop with ten high school students, and report on how they interacted with the kit, as well as what they learned through the DebugIt activities. In the discussion, we delve into the affordances and challenges of using these kits as both learning and assessment tools. We also discuss how our pilot and prototype can inform the design of reconstruction kits in other areas of making. 
    more » « less
  2. In this paper, we present the development of a "reconstruction kit" for e-textiles, which transforms fixed-state construction kits---maker tools and technologies that focus on the creation of semi-permanent projects---into flex-state construction kits that allow for endless deconstruction and reconstruction. The kit uses modular pieces that allow students to both solve and create troubleshooting and debugging challenges, which we call "DebugIts." We tested our prototype in an after-school workshop with ten high school students, and report on how they interacted with the kit, as well as what they learned through the DebugIt activities. In the discussion, we delve into the affordances and challenges of using these kits as both learning and assessment tools. We also discuss how our pilot and prototype can inform the design of reconstruction kits in other areas of making. 
    more » « less
  3. Debugging, a recurrent practice while programming, can reveal significant information about student learning. Making electronic textile (e-textile) artifacts entails numerous opportunities for students to debug across circuitry, coding, crafting and designing domains. In this study, 69 high school students worked on a series of four different e-textiles projects over eight weeks as a part of their introductory computer science course. We analyzed debugging challenges and resolutions reported by students in their portfolios and interviews and found not only a wide range of computational concepts but also the development of specific computational practices such as being iterative and incremental in students’ debugging e-textiles projects. In the discussion, we address the need for more studies to recognize other computational practices such as abstraction and modularization, the potential of hybrid contexts for debugging, and the social aspects of debugging. 
    more » « less
  4. Debugging, a recurrent practice while programming, can reveal significant information about student learning. Making electronic textile (e-textile) artifacts entails numerous opportunities for students to debug across circuitry, coding, crafting and designing domains. In this study, 69 high school students worked on a series of four different e-textiles projects over eight weeks as a part of their introductory computer science course. We analyzed debugging challenges and resolutions reported by students in their portfolios and interviews and found not only a wide range of computational concepts but also the development of specific computational practices such as being iterative and incremental in students’ debugging e-textiles projects. In the discussion, we address the need for more studies to recognize other computational practices such as abstraction and modularization, the potential of hybrid contexts for debugging, and the social aspects of debugging. 
    more » « less
  5. Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice. 
    more » « less